I greet you this day,
These are the solutions to Cambridge Ordinary Level (O-Level) past questions on the Mathematics of Finance.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified
of upcoming livestreams.
You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the
any of the Cambridge Assessments on Mathematics, please consider making a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
(1.) Monthly interest payment = Monthly interest rate * Average balance
(2.) Net monthly cash flow = Monthly income − Monthly expenses
$ (1.)\:\: SI = Prt \\[3ex] (2.)\:\: SI = A - P \\[3ex] (3.)\:\: P = \dfrac{SI}{rt} \\[5ex] (4.)\:\: t = \dfrac{SI}{Pr} \\[5ex] (5.)\:\: r = \dfrac{SI}{Pt} \\[5ex] (6.)\:\: A = P + SI \\[3ex] (7.)\:\: A = P(1 + rt) \\[3ex] (8.)\:\: P = \dfrac{A}{1 + rt} \\[5ex] (9.)\:\: t = \dfrac{A - P}{Pr} \\[5ex] (10.)\:\: r = \dfrac{A - P}{Pt} \\[5ex] (11.)\:\: SI = \dfrac{Art}{1 + rt} $
$
(1.)\:\: A = P\left(1 + \dfrac{r}{m}\right)^{mt} \\[7ex]
(2.)\:\: P = \dfrac{A}{\left(1 + \dfrac{r}{m}\right)^{mt}} \\[10ex]
(3.)\:\: r = m\left[\left(\dfrac{A}{P}\right)^{\dfrac{1}{mt}} - 1\right] \\[10ex]
(4.)\:\: r = m\left(10^{\dfrac{\log\left(\dfrac{A}{P}\right)}{mt}} - 1\right) \\[10ex]
(5.)\:\: t = \dfrac{\log\left(\dfrac{A}{P}\right)}{m\log\left(1 + \dfrac{r}{m}\right)} \\[7ex]
(6.)\:\: A = P + CI \\[3ex]
(7.)\:\: CI = A - P \\[3ex]
(8.)\:\: A = P(1 + i)^n \\[4ex]
(9.)\:\: P = \dfrac{A}{(1 + i)^n} \\[7ex]
(10.)\:\: i = \dfrac{r}{m} \\[5ex]
(11.)\:\: n = mt \\[3ex]
(12.)\;\; Total\;\;Return = \dfrac{A - P}{P} * 100\% \\[7ex]
(13.)\;\; Annual\;\;Return = \left[\left(\dfrac{A}{P}\right)^{\dfrac{1}{t}} - 1\right] * 100\% \\[7ex]
$
Future Value (Amount) of Cash Flows (Principal) for Several Years
$
(13.)\:\:At\:\:the\:\:end\:\:of\:\:each\:\:year:\:\: FV = PV\left(1 +
\dfrac{r}{m}\right)^{m(last\:\:year - that\:\:year)} \\[7ex]
(14.)\:\: Total\:FV = \Sigma FV
$
Values of $m$
If Compounded: | m = |
---|---|
Annually |
$1$ ($1$ time per year) Also means every twelve months |
Semiannually |
2 (2 times per year) Also means every six months |
Quarterly |
4 (4 times per year) Also means every three months |
Monthly |
12 (12 times per year) Also means every month |
Weekly | 52 (52 times per year) |
Daily (Ordinary/Banker's Rule) | 360 (360 times per year) |
Daily (Exact) | 365 (365 times per year) |
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.