I greet you this day,
These are the solutions to the Cambridge O-Level (Ordinary Level) past questions on Integral Calculus.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified
of upcoming livestreams.
You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the
any of the Cambridge Assessments on Mathematics, please consider making a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
$ \text{a, b, n are positive constants} \\[3ex] (1.)\:\: \displaystyle\int ax^n dx = \dfrac{ax^{n + 1}}{n + 1} + C \\[7ex] (2.)\:\: \displaystyle\int (ax \pm b)^n dx = \dfrac{(ax \pm b)^{n + 1}}{a(n + 1)} + C \\[7ex] (3.)\:\: \displaystyle\int (-ax \pm b)^n dx = -\dfrac{(ax \pm b)^{n + 1}}{a(n + 1)} + C \\[5ex] $
$ \text{a, b, k, n are positive constants} \\[3ex] (1.)\:\: \displaystyle\int a^x dx = \dfrac{a^x}{\ln a} + C \\[7ex] (2.)\:\: \displaystyle\int e^x dx = e^x + C \\[7ex] (3.)\:\: \displaystyle\int e^{kx} dx = \dfrac{e^{kx}}{k} + C \\[7ex] (4.)\:\: \displaystyle\int e^{-kx} dx = \dfrac{-e^{-kx}}{k} + C \\[7ex] (5.)\:\: \displaystyle\int e^{ax \pm b} dx = \dfrac{e^{ax \pm b}}{n} + C \\[7ex] (6.)\:\: \displaystyle\int k^{ax \pm b} dx = \dfrac{k^{ax \pm b}}{a\ln k} + C \\[7ex] (7.)\:\: \displaystyle\int xe^{ax} dx = \dfrac{e^{ax}(ax - 1)}{a^2} + C \\[7ex] (8.)\:\: \displaystyle\int x^ne^{ax} dx = \dfrac{x^ne^{ax}}{a} - \dfrac{n}{a}\displaystyle\int x^{n - 1}e^{ax} dx \\[7ex] (9.)\:\: \displaystyle\int \dfrac{dx}{1 + ke^{ax}} = x - \dfrac{\ln(1 + ke^{ax})}{a} + C \\[5ex] $
$ \text{n is a positive constant} \\[3ex] (1.)\:\: \displaystyle\int \ln x dx = x\ln x - x + C \\[7ex] (2.)\:\: \displaystyle\int (\ln x)^n dx = x(\ln x)^n - n\displaystyle\int (\ln x)^{n - 1}dx \\[7ex] (3.)\:\: \displaystyle\int \dfrac{dx}{x\ln x} = \ln|\ln x| + C \\[7ex] (4.)\:\: \displaystyle\int x^n\ln x dx = \dfrac{x^{n + 1}[\ln x(n + 1) - 1]}{(n + 1)^2} + C \\[5ex] $
$ (1.)\:\: \displaystyle\int \sin x dx = -cos x + C \\[7ex] (2.)\:\: \displaystyle\int cos x dx = sin x + C \\[7ex] (3.)\:\: \displaystyle\int \sec^2 x = \tan x + C \\[5ex] $
$ (1.)\:\: \displaystyle\int \sinh x dx = \cosh x + C \\[7ex] (2.)\:\: \displaystyle\int \cosh x dx = \sinh x + C \\[5ex] $
$ \text{a, b, n are positive constants} \\[3ex] (1.)\:\: \displaystyle\int \dfrac{1}{x} dx = \ln x + C \\[7ex] (2.)\:\: \displaystyle\int \dfrac{1}{ax \pm b} dx = \dfrac{\ln|ax \pm b|}{a} + C \\[7ex] (3.)\:\: \displaystyle\int \dfrac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}x + C \\[7ex] (4.)\:\: \displaystyle\int \dfrac{-1}{\sqrt{1 - x^2}} dx = \cos^{-1}x + C \\[7ex] (5.)\:\: \displaystyle\int \dfrac{1}{1 + x^2} dx = \tan^{-1}x + C \\[7ex] (6.)\:\: \displaystyle\int \dfrac{1}{\sqrt{x^2 + 1}} dx = \sinh^{-1}x + C \\[7ex] (7.)\:\: \displaystyle\int \dfrac{1}{\sqrt{x^2 - 1}} dx = \cosh^{-1}x + C \\[7ex] (8.)\:\: \displaystyle\int \dfrac{1}{1 - x^2} dx = \tanh^{-1}x + C \\[5ex] $
$ \text{a, b, n are positive constants} \\[3ex] (1.)\:\: \displaystyle\int |x| dx = \dfrac{x|x|}{2} + C \\[7ex] (2.)\:\: \displaystyle\int |ax \pm b| dx = \dfrac{(ax \pm b)|ax \pm b|}{2a} + C \\[5ex] $
$
\underline{\text{Algebraic Substitution}} \\[3ex]
(1.)\:\: \displaystyle\int f(x)f'(x) dx = \dfrac{f^2(x)}{2} + C \\[7ex]
(2.)\:\: \displaystyle\int \dfrac{f'(x)}{f(x)} dx = \ln f(x) + C \\[7ex]
(3.)\:\: \displaystyle\int \dfrac{-f'(x)}{f(x)} dx = -\ln f(x) + C \\[7ex]
\underline{\text{Trigonometric Substitution}} \\[3ex]
(4.)\;\; \displaystyle\int \dfrac{dx}{a^2 + x^2} = \dfrac{1}{a}\tan^{-1}\left(\dfrac{x}{a}\right) + C \\[7ex]
(5.)\;\; \displaystyle\int \dfrac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\dfrac{x}{a}\right) + C \\[7ex]
(6.)\;\; \displaystyle\int \sqrt{a^2 - x^2}dx = \dfrac{a^2}{2}\left[\sin^{-1}\left(\dfrac{x}{a}\right) +
\dfrac{x\sqrt{a^2 - x^2}}{a^2}\right] + C \\[7ex]
\underline{\text{Integration by Parts (Integration of Products)}} \\[3ex]
(7.)\;\; \displaystyle\int vdu = uv - \displaystyle\int udv \\[7ex]
\underline{\text{Hyperbolic Substitution}} \\[3ex]
(8.)\;\; \displaystyle\int \dfrac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1}\left(\dfrac{x}{a}\right) + C \\[7ex]
(9.)\;\; \displaystyle\int \dfrac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1}\left(\dfrac{x}{a}\right) + C \\[7ex]
\underline{\text{Integral Reflection Method}} \\[3ex]
\text{Also known as Symmetric Substitution OR Functional Transformation in Integration} \\[3ex]
\displaystyle\int_a^b \dfrac{f(x_1)}{f(x_1) + f(x_2)}dx \\[7ex]
Let\;\; a + b = \text{some constant},\;c \\[3ex]
\text{Set the substitution}:\;\; x = c - x \\[3ex]
\implies \\[3ex]
f(x) = \text{original function} \\[3ex]
f(c - x) = \text{transformed function} \\[3ex]
\text{Assume the original function and the transformed function complements each other} \\[3ex]
f(x) + f(c - x) = 1 \\[3ex]
Let\;\; I_1 = \displaystyle\int_a^b \dfrac{f(x_1)}{f(x_1) + f(x_2)}dx ...\text{integral of original function}
\\[7ex]
Let:\;\;I_2 = \displaystyle\int_a^b \dfrac{f(x_2)}{f(x_2) + f(x_1)}dx ...\text{integral of transformed function}
\\[7ex]
I_1 = I_2 = \text{the integral},\;I \\[4ex]
I_1 + I_2 = 2I \\[3ex]
$
Because we are integrating over the same limits and the variable, x is just being swapped with c
− x, the integral remains the same as long as the transformation preserves the total area under the
curve.
$
2I = \displaystyle\int_a^b 1 dx = [x]_a^b = b - a \\[5ex]
I = \dfrac{b - a}{2}
$
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.