Please Read Me.

Junior Level Science Scholarship (JLSS) Resources

Welcome to Our Site


I greet you this day,
These are the solutions to the Junior Level Science Scholarship (JLSS) Examination sample tests.
If you find these resources valuable and if any of these resources were helpful in your passing the JLSS exam, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

DOST-SEI-JLSS-Primer-1st


DOST-SEI-JLSS-Primer-2nd


JLSS-Primer-2024


JLSS-ExamReview-MockExam-XavierUniversity


SYENSIYA-bilidad-DOST


JLSS Sample Test: Polytechnic University of the Philippines
(1.) Find the length of the radius of the circle: $x^2 + y^2 + 4x - 6y - 3 = 0$.

$ a.\;\; 16 \\[3ex] b.\;\; 4 \\[3ex] c.\;\; 8 \\[3ex] d.\;\; 2\sqrt{2} \\[3ex] $

$ x^2 + y^2 + 4x - 6y - 3 = 0 \\[3ex] x^2 + 4x + y^2 - 6y = 3 \\[3ex] ....................................... \\[3ex] \text{coefficient of }x = 4 \\[3ex] \text{half of it} = \dfrac{1}{2} * 4 = 2 \\[5ex] \text{square it} = 2^2 \\[5ex] \text{coefficient of }y = -6 \\[3ex] \text{half of it} = \dfrac{1}{2} * -6 = -3 \\[5ex] \text{square it} = (-3)^2 \\[3ex] ....................................... \\[3ex] x^2 + 4x + 2^2 + y^2 - 6y + (-3)^2 = 3 + 2^2 + (-3)^2 \\[3ex] (x + 2)^2 + (y - 3)^2 = 3 + 4 + 9 \\[3ex] (x + 2)^2 + (y - 3)^2 = 16 \\[3ex] (x + 2)^2 + (y - 3)^2 = 4^2 \\[3ex] \text{Compare to the standard form: } (x - a)^2 + (y - b)^2 = r^2 \\[3ex] r = \text{radius} = 4 $
(2.) Number 2

In Figure 1, the x-intercepts of a parabola are 2 and 4, and the y-intercept is 8.
If the parabola passes through the point (a, 8), what is the value of a?

$ a.\;\; 8 \\[3ex] b.\;\; 7 \\[3ex] c.\;\; 6 \\[3ex] d.\;\; 5 \\[3ex] $

$ x-\text{intercepts} = (2, 0) \hspace{2em}\text{and}\hspace{2em} (4, 0) \\[3ex] \text{zeros} = 2, 4 \\[3ex] \text{factors} = (x - 2)(x - 4) \\[3ex] \implies \\[3ex] y = k(x - 2)(x - 4)...\text{k is the leading coefficient} \\[3ex] y-\text{intercept} = (0, 8) \\[3ex] \text{passes through } (0, 8) \\[3ex] \text{To find leading coefficient, k} \\[3ex] x = 0,\hspace{3em} y = 8 \\[3ex] \implies \\[3ex] 8 = k(0 - 2)(0 - 4) \\[3ex] 8 = 8k \\[3ex] 8k = 8 \\[3ex] k = \dfrac{8}{8} \\[5ex] k = 1 \\[3ex] \implies \\[3ex] y = 1(x - 2)(x - 4) \\[3ex] y = (x - 2)(x - 4) \\[3ex] \text{Also}: \\[3ex] \text{passes through } (a, 8) \\[3ex] x = a,\hspace{3em} y = 8 \\[3ex] \implies \\[3ex] 8 = (a - 2)(a - 4) \\[3ex] a^2 - 4a - 2a + 8 = 8 \\[3ex] a^2 - 6a = 8 - 8 \\[3ex] a(a - 6) = 0 \\[3ex] a = 0 \hspace{2em}\text{OR}\hspace{2em} a - 6 = 0 \\[3ex] a = 0 \hspace{2em}\text{OR}\hspace{2em} a = 6 \\[3ex] \text{Point 1} = y-\text{intercept} = (0, 8) \\[3ex] \text{Point 2} = (a, 8) = (6, 8) \\[3ex] a = 6 $
(3.) For what value of x does 1 + 2 + 3 + 4 + 5 + ... + x = 171?

$ a.\;\; 17 \\[3ex] b.\;\; 15 \\[3ex] c.\;\; 16 \\[3ex] d.\;\; 18 \\[3ex] $

The sum of the first n natural numbers is: $\text{Sum} = \dfrac{n(n + 1)}{2} \\[5ex]$ Therefore, the sum of the first x natural numbers is:

$ \text{Sum} = \dfrac{x(x + 1)}{2} \\[5ex] \dfrac{x(x + 1)}{2} = 171 \\[5ex] x(x + 1) = 2(171) \\[3ex] x^2 + x - 342 = 0 \\[3ex] (x + 19)(x - 18) = 0 \\[3ex] x + 19 = 0 \hspace{2em}\text{OR}\hspace{2em} x - 18 = 0 \\[3ex] x = -19 \hspace{2em}\text{OR}\hspace{2em} x = 18 \\[3ex] \text{Because the sum is a positive number; } x = 18 \\[3ex] $ Student: Mr. C
Teacher: Yes dear Student
Student: What if I did not memorize the sum of the first n natural numbers?
Or what if I do not know the formula?
Teacher: The sequence is an Arithmetic Sequence.
So, we can derive the formula for the sequence based on the formula for the Sum of Arithmetic Sequence.
Let's do it.


$ 1 + 2 + 3 + 4 + 5 + ... + x \\[3ex] \text{first term, } a = 1 \\[3ex] \text{common difference, } d = 2 - 1 = 1 \\[3ex] \text{number of terms, } n = x \\[3ex] \text{sum of n terms of an Arithmetic Sequence, } SAS_n = SAS_x \\[3ex] \implies \\[3ex] SAS_x = \dfrac{x}{2}[2a + d(x - 1)] \\[5ex] = \dfrac{x}{2}[2(1) + 1(x - 1)] \\[5ex] = \dfrac{x}{2}(2 + x - 1) \\[5ex] = \dfrac{x}{2}(x + 1) \\[5ex] = \dfrac{x(x + 1)}{2} $
(4.) Let a and b be the roots of the quadratic equation: $(x - 2)(x - 3) + (x - 3)(x + 1) + (x + 1)(x - 2) = 0 \\[3ex]$ Evaluate $ \dfrac{1}{(a + 1)(b + 1)} + \dfrac{1}{(a - 2)(b - 2)} + \dfrac{1}{(a - 3)(b - 3)} \\[6ex] a.\;\; \dfrac{3}{7} \\[5ex] b.\;\; \dfrac{4}{15} \\[5ex] c.\;\; 0 \\[3ex] d.\;\; \dfrac{1}{4} \\[5ex] $

Let α, β be the roots of the equation (replacing a and b respectively in the question).

$ (x - 2)(x - 3) + (x - 3)(x + 1) + (x + 1)(x - 2) = 0 \\[3ex] (x - 3)[(x - 2) + (x + 1)] + (x + 1)(x - 2) = 0 \\[3ex] (x - 3)(x - 2 + x + 1) + (x + 1)(x - 2) = 0 \\[3ex] (x - 3)(2x - 1) + (x + 1)(x - 2) = 0 \\[3ex] 2x^2 - x - 6x + 3 + x^2 - 2x + x - 2 = 0 \\[3ex] 3x^2 - 8x + 1 = 0 \\[3ex] \text{Compare to the standard form: } ax^2 + bx + c = 0 \\[3ex] a = 3 \\[3ex] b = -8 \\[3ex] c = 1 \\[3ex] \text{Sum of roots, } \alpha + \beta = -\dfrac{b}{a} = -\dfrac{-8}{3} = \dfrac{8}{3} \\[5ex] \text{Product of roots, } \alpha\beta = \dfrac{c}{a} = \dfrac{1}{3} \\[5ex] (\alpha + 1)(\beta + 1) \\[3ex] = \alpha\beta + \alpha + \beta + 1 \\[5ex] = \dfrac{1}{3} + \dfrac{8}{3} + \dfrac{3}{3} \\[5ex] = \dfrac{1 + 8 + 3}{3} \\[5ex] = \dfrac{12}{3} \\[5ex] = 4 \\[5ex] (\alpha - 2)(\beta - 2) \\[3ex] = \alpha\beta -2\alpha - 2\beta + 4 \\[5ex] = \alpha\beta -2(\alpha + \beta) + 4 \\[5ex] = \dfrac{1}{3} - 2\left(\dfrac{8}{3}\right) + \dfrac{12}{3} \\[5ex] = \dfrac{1 - 16 + 12}{3} \\[5ex] = -\dfrac{3}{3} \\[5ex] = -1 \\[5ex] (\alpha - 3)(\beta - 3) \\[3ex] = \alpha\beta -3\alpha - 3\beta + 9 \\[5ex] = \alpha\beta -3(\alpha + \beta) + 9 \\[5ex] = \dfrac{1}{3} - 3\left(\dfrac{8}{3}\right) + \dfrac{27}{3} \\[5ex] = \dfrac{1 - 24 + 27}{3} \\[5ex] = \dfrac{4}{3} \\[5ex] \implies \\[3ex] \dfrac{1}{(\alpha + 1)(\beta + 1)} + \dfrac{1}{(\alpha - 2)(\beta - 2)} + \dfrac{1}{(\alpha - 3)(\beta - 3)} \\[5ex] = \dfrac{1}{4} + \dfrac{-1}{1} + \dfrac{3}{4} \\[5ex] = \dfrac{1}{4} - \dfrac{4}{4} + \dfrac{3}{4} \\[5ex] = \dfrac{0}{4} \\[5ex] = 0 $
(5.) Which of the following relations are functions?

$ I.\;\; x^2 + y^2 = 4 \\[3ex] II.\;\; x - y = 4x \\[3ex] III.\;\; y = \sqrt{4} - x \\[3ex] IV.\;\; x = y^2 - y - 6 \\[3ex] V.\;\; y = x^2 + 5x + 6 \\[3ex] VI.\;\; x^2 = y^2 \\[5ex] a.\;\; II, III, IV \\[3ex] b.\;\; II, III, V \\[3ex] c.\;\; I, IV, VI \\[3ex] d.\;\; I, II, III \\[3ex] $

$ I.\;\; x^2 + y^2 = 4 \\[3ex] x^2 = 4 - y^2 \\[3ex] x = \pm\sqrt{4 - y^2}...\text{This is NOT a function} \\[5ex] II.\;\; x - y = 4x \\[3ex] y = x - 4x \\[3ex] y = -3x ...\text{This is a linear function} \\[5ex] III.\;\; y = \sqrt{4} - x...\text{This is a linear function} \\[5ex] IV.\;\; x = y^2 - y - 6 \\[3ex] y^2 = x + y + 6 \\[3ex] y = \pm \sqrt{x + y + 6} ...\text{This is NOT a function} \\[5ex] V.\;\; y = x^2 + 5x + 6 ...\text{This is a quadratic function} \\[5ex] VI.\;\; x^2 = y^2 \\[3ex] y = \pm\sqrt{x^2} ...\text{This is NOT a function} \\[5ex] The functions are: b.\;\; II, III, V $
(6.) A jar contains 12 blue marbles, 8 red marbles, and 20 green marbles.
You pick one marble from the jar.
Find the theoretical probability, P(blue or green)

$ a.\;\; \dfrac{4}{5} \\[5ex] b.\;\; \dfrac{1}{21} \\[5ex] c.\;\; \dfrac{2}{5} \\[5ex] d.\;\; \dfrac{3}{20} \\[5ex] $

Let the:
Sample Space = S
blue = B
red = R
green = G

$ n(B) = 12 \\[3ex] n(R) = 8 \\[3ex] n(G) = 20 \\[3ex] S = \{12B, 8R, 20G\} \\[3ex] n(S) = 12 + 8 + 20 = 40 \\[3ex] P(B or G) = P(B) + P(G) ...\text{Addition Rule for Independent Events} \\[3ex] = \dfrac{n(B)}{n(S)} + \dfrac{n(G)}{n(S)} \\[5ex] = \dfrac{12}{40} + \dfrac{20}{40} \\[5ex] = \dfrac{32}{40} \\[5ex] = \dfrac{4}{5} $
(7.) Solve the following by completing the squares: $x^2 + 6x - 2 = 0$

$ a.\;\; \sqrt{11} \pm 3 \\[3ex] b.\;\; \pm 3 \\[3ex] c.\;\; 3 \pm \sqrt{11} \\[3ex] d.\;\; -3 \pm \sqrt{11} \\[3ex] $

$ x^2 + 6x - 2 = 0 \\[3ex] x^2 + 6x = 2 \\[3ex] \text{coefficient of }x = 6 \\[3ex] \text{half of it} = \dfrac{1}{2} * 6 = 3 \\[5ex] \text{square it} = 3^2 \\[3ex] \implies \\[3ex] x^2 + 6x + 3^2 = 2 + 3^2 \\[3ex] (x + 3)^2 = 2 + 9 \\[3ex] x + 3 = \pm\sqrt{11} \\[3ex] x = -3 \pm\sqrt{11} $
(8.) You blindly guessed the last five multiple-choice items (4 choices) of a practice test.
What is the probability that you will answer all five questions correctly?

$ a.\;\; \dfrac{1}{40} \\[5ex] b.\;\; \dfrac{1}{6} \\[5ex] c.\;\; \dfrac{1}{1024} \\[5ex] d.\;\; \dfrac{1}{20} \\[5ex] $

Let:
S = sample space
E = event space

$ n(S) = 4 ...\text{4 choices} \\[3ex] n(E) = 1 ...\text{1 correct option} \\[3ex] P(E) = \dfrac{n(E)}{n(S)} = \dfrac{1}{4} ...\text{probability of answering one question correctly} \\[5ex] \text{The probability of answering five questions correctly} \\[3ex] = \left(\dfrac{1}{4}\right)^5...\text{Multiplication Rule for Independent Events} \\[5ex] = \dfrac{1}{1024} $
(9.) Write the equation of the parabola with vertex (9, −2) and the point (12, 16) in vertex form.

$ a.\;\; y = (x + 9)^2 + 2 \\[3ex] b.\;\; y = (x - 12)^2 - 16 \\[3ex] c.\;\; y = 2(x - 9)^2 - 2 \\[3ex] d.\;\; y = 3(x + 12)^2 + 16 \\[3ex] $

$ y = a(x - h)^2 + k ...\text{Vertex Form of a Quadratoc Function} \\[3ex] Vertex = (h, k) = (9, -2) \\[3ex] h = 9 \\[3ex] k = -2 \\[3ex] Point = (x, y) = (12, 16) \\[3ex] x = 12 \\[3ex] y = 16 \\[3ex] \text{Find the leading coefficient, }a \\[3ex] 16 = a(12 - 9)^2 + -2 \\[3ex] 16 = 9a - 2 \\[3ex] 9a = 16 + 2 \\[3ex] 9a = 18 \\[3ex] a = \dfrac{18}{9} \\[5ex] a = 2 \\[3ex] \implies \\[3ex] y = 2(x - 9)^2 + -2 \\[3ex] y = 2(x - 9)^2 - 2 $
(10.) A circle with the equation $(x - 2)^2 + (y - 2)^2 = 4$ is on the xy-coordinate plane.
What is the point on the circle opposite the point (0, 2), which is also on the circle?

$ a.\;\; (2, 0) \\[3ex] b.\;\; (4, 2) \\[3ex] c.\;\; (0, -2) \\[3ex] d.\;\; \\[3ex] $

$ (x - 2)^2 + (y - 2)^2 = 4 \\[3ex] \text{Compare to the Standard Form of the equation of a circle: } (x - h)^2 + (y - k)^2 = r^2 \\[3ex] \text{where} \\[3ex] (h, k) = \text{center of the circle} = (2, 2) \\[3ex] h = 2 \\[3ex] k = 2 \\[3ex] r = \text{radius of the circle} = 2 \\[3ex] \text{End point 1} = (x_1 - h, k) = (0, 2)...\text{Given} \\[3ex] (x_1 - 2, 2) = (0, 2) \\[3ex] x_1 - 2 = 0 \\[3ex] x_1 = 0 + 2 \\[3ex] x_1 = 2 \\[3ex] \text{End point 2} = (x_1 + h, k) \\[3ex] = (2 + 2, 2) \\[3ex] = (4, 2) $
(11.) Which equation represents a hyperbola?

$ a.\;\; y = 16x^2 \\[3ex] b.\;\; y = 16 - x^2 \\[3ex] c.\;\; y^2 = 16 - x^2 \\[3ex] d.\;\; y = \dfrac{16}{x} \\[5ex] $

$ a.\;\; y = 16x^2...\text{This is a vertical parabola} \\[5ex] b.\;\; y = 16 - x^2 ...\text{This is a vertical parabola} \\[5ex] c.\;\; y^2 = 16 - x^2 \\[3ex] x^2 + y^2 = 16 ...\text{This is a circle} \\[5ex] d.\;\; y = \dfrac{16}{x} \\[5ex] xy = 16 ...\text{This is a hyperbola whose axis are the asymptotes.} $
(12.) Find the equation of the line that passes through the point (−2, −5) and is parallel to the line $5x - 4y = 2$.

$ a.\;\; 5x - 4y = -17 \\[3ex] b.\;\; 5x - 4y = 10 \\[3ex] c.\;\; -2x - 5y = 2 \\[3ex] d.\;\; 5x + 4y = 2 \\[3ex] $

$ 5x - 4y = 2 \\[3ex] 5x - 2 = 4y \\[3ex] 4y = 5x - 2 \\[3ex] y = \dfrac{5x - 2}{4} \\[5ex] y = \dfrac{5}{4}x - \dfrac{2}{4} \\[5ex] y = \dfrac{5}{4}x - \dfrac{1}{2} \\[5ex] \text{Slope, } m = \dfrac{5}{4} \\[5ex] \underline{\text{Equation of the line}} \\[3ex] \text{parallel to }5x - 4y = 2 \implies \text{same slope, } m = \dfrac{5}{4} \\[5ex] \text{passes through } (-2, -5) \\[3ex] x = -2 \\[3ex] y = -5 \\[3ex] y = mx + b ...\text{Slope - Intercept Form} \\[3ex] -5 = \dfrac{5}{4} * -2 + b \\[5ex] -5 = -\dfrac{5}{2} + b \\[5ex] b = -5 + \dfrac{5}{2} \\[5ex] b = \dfrac{-10 + 5}{2} \\[5ex] b = -\dfrac{5}{2} \\[5ex] \implies \\[3ex] y = \dfrac{5}{4}x -\dfrac{5}{2} \\[5ex] \text{LCD} = 4 \\[3ex] 4y = 4 * \dfrac{5}{4}x - 4 * \dfrac{5}{2} \\[5ex] 4y = 5x - 10 \\[3ex] 5x - 4y = 10 $
(13.) Given the inequality $-6x - 4 \lt \dfrac{5x + 4}{-1}$, what are the possible values of x?

$ a.\;\; \{x|x \gt 0|\} \\[3ex] b.\;\; \{x|x \lt 0|\} \\[3ex] c.\;\; \{x|x = 1|\} \\[3ex] d.\;\; \{x|x \in W|\} \\[3ex] $

$ -6x - 4 \lt \dfrac{5x + 4}{-1} \\[5ex] -1(-6x - 4) \gt 5x + 4 ...\text{multiplying by a negative number} \\[3ex] 6x + 4 \gt 5x + 4 \\[3ex] 6x - 5x \gt 4 - 4 \\[3ex] x \gt 0 $
(14.) Given the equation $\log_5 b = 3$, what is the value of b?

$ a.\;\; 15 \\[3ex] b.\;\; \dfrac{5}{3} \\[5ex] c.\;\; 125 \\[3ex] d.\;\; 10 \\[3ex] $

$ \log_5 b = 3 \\[3ex] b = 5^3 ...\text{Relationship Between Exponents and Logarithms} \\[3ex] b = 125 $
(15.) For general exponential functions, where $f(x) = b^x$, what should be the value of base b?

a. a negative integer
b. a positive integer
c. a whole number
d. a positive constant


The base should be a positive integer, b > 0
(16.) If $\tan\theta = -\dfrac{1}{2}$ and 270° ≤ θ ≤ 360°, what is $\sin\theta$?

$ a.\;\; -\dfrac{1}{\sqrt{5}} \\[5ex] b.\;\; \dfrac{1}{\sqrt{5}} \\[5ex] c.\;\; \dfrac{1}{2} \\[5ex] d.\;\; \text{cannot be determined} \\[3ex] $

270° ≤ θ ≤ 360° means that θ is in the 4th quadrant

$ \tan\theta = \dfrac{opp}{adj}...\text{SOHCAHTOA} \\[5ex] \tan\theta = -\dfrac{1}{2} \\[5ex] $ Number 16

$ hyp^2 = opp^2 + adj^2 ...\text{Pythagorean Theorem} \\[3ex] hyp^2 = (-1)^2 + (-2)^2 \\[3ex] hyp = \sqrt{1 + 4} \\[5ex] hyp = \sqrt{5} \\[5ex] \sin\theta = \dfrac{opp}{hyp}...\text{SOHCAHTOA} \\[5ex] \sin\theta = -\dfrac{1}{\sqrt{5}} $
(17.) How many possible combinations are there if Sonya has 3 pairs of shorts, 4 blouses, and 5 pairs of shoes?

$ a.\;\; 300 \\[3ex] b.\;\; 60 \\[3ex] c.\;\; 12 \\[3ex] d.\;\; 50 \\[3ex] $

Number of combinations = 3 * 4 * 5 ...Fundamental Counting Principle
= 60 combinations.
(18.) Myra, Mica, Mike, Mikki, and Marla are sitting at a round table when they thought of exchanging seats and counting all the possible arrangements they can do.
How many arrangements would they count in the end?

$ a.\;\; 60 \\[3ex] b.\;\; 24 \\[3ex] c.\;\; 5 \\[3ex] d.\;\; 120 \\[3ex] $

Number of permutations around a circular object (round table) refers to the number of distinct ways people can be arranged when seated around a circular table, where rotations of the same arrangement are considered identical.

$ \text{Number of students, }n = 5 \\[3ex] \text{Number of permutations around a circular object (round table)} \\[3ex] = (n - 1)! \\[3ex] = (5 - 1)! \\[3ex] = 4 * 3 * 2 * 1 \\[3ex] = 24\text{ arrangments} $
(19.) The vertex of the parabola: $y^2 = 12x$ is:

$ a.\;\; V(0, 0) \\[3ex] b.\;\; V(0, 3) \\[3ex] c.\;\; V(-3, 0) \\[3ex] d.\;\; V(-3, 3) \\[3ex] $

The y is squared, hence this is a horizontal parabola.
The general form of a horizontal parabola is: $(y - k)^2 = 4p(x - h)$ where:
p the distance from the vertex to the focus and the distance from the vertex to the directrix.
(h, k) is the vertex

$ y^2 = 12x \\[3ex] y^2 = 4 * 3 * x \\[3ex] (y - 0)^2 = 4 * 3 * (x - 0) \\[3ex] \text{Vertex} = (0, 0) $
(20.) Given the figure below, what is the value of y?

Number 20

$ a.\;\; \sqrt{3} \\[3ex] b.\;\; 2\sqrt{3} \\[3ex] c.\;\; 6 \\[3ex] d.\;\; 12 \\[3ex] $

$ \sin 30 = \dfrac{3}{y} ...\text{SOHCAHTOA} \\[5ex] \dfrac{1}{2} = \dfrac{3}{y} \\[5ex] \text{Cross Multiply} \\[3ex] y * 1 = 2 * 3 \\[3ex] y = 6 $
(21.) Which of the following is the derivative of a constant?

$ a.\;\; 1 \\[3ex] b.\;\; 0 \\[3ex] c.\;\; \dfrac{1}{2} \\[5ex] d.\;\; \text{cannot be determined} \\[3ex] $

The derivative of a constant is 0.
(22.) The graph of $16x - 2y = 48$ intersects the y-axis at the point (a, b).
What is the sum of a and b?

$ a.\;\; -24 \\[3ex] b.\;\; 32 \\[3ex] c.\;\; -4 \\[3ex] d.\;\; 12 \\[3ex] $

$ 16x - 2y = 48 \\[3ex] 8x - y = 24 \\[3ex] y = 8x - 24 \\[3ex] \text{On the y-axis, } x = 0 \\[3ex] y = 8(0) - 24 \\[3ex] y = 0 - 24 \\[3ex] y = -24 \\[3ex] (x, y) = (a, b) = (0, -24) \\[3ex] a = 0 \\[3ex] b = -24 \\[3ex] a + b = 0 + -24 = -24 $
(23.) How many 3-digit numbers can be formed from the digits 0, 1, 2, and 3, if each digit can be used only once.

$ a.\;\; 24 \\[3ex] b.\;\; 18 \\[3ex] c.\;\; 12 \\[3ex] d.\;\; 20 \\[3ex] $

3-digit numbers to be formed from the digits 0, 1, 2, and 3
Restriction:
(1.) No repetition: each digit can be used only once

Given the fact that 012 is the same as 12, we can add another condition:
(2.) The number must not begin with 0

Any of the 3 digits (1, 2, 3) can be the 1st digit: 3 ways
Any of the remaining 2 digits and 0 (3 − 1 + 1 = 3 digits) can be the 2nd digit: 3 ways
Any of the remaining 2 digits (4 − 2 = 2) can be the 3rd digit: 2 ways

$ \text{Number of 3-digit numbers}: \\[3ex] \begin{array}{c c c} \stackrel{\Large 3}{\rule{1cm}{0.5mm}} & \stackrel{\Large 3}{\rule{1cm}{0.5mm}} & \stackrel{\Large 2}{\rule{1cm}{0.5mm}} \end{array} \\[4ex] = 3 * 3 * 2 \\[3ex] = 18\text{ numbers}. $
(24.) Find the sum of the arithmetic series 1, 5, 9, 13, ..., 45.

$ a.\;\; 300 \\[3ex] b.\;\; 297 \\[3ex] c.\;\; 276 \\[3ex] d.\;\; 254 \\[3ex] $

$ 1, 5, 9, 13, ..., 45 \\[3ex] \text{first term, } a = 1 \\[3ex] \text{common difference, } d = 5 - 1 = 4 \\[3ex] \text{last term = nth term, } p = 45 \\[3ex] \text{number of terms, } n = ? \\[3ex] \text{sum of the arithmetic series, } SAS = ? \\[5ex] p = a + d(n - 1) \\[3ex] 45 = 1 + 4(n - 1) \\[3ex] 4(n - 1) = 45 - 1 \\[3ex] n - 1 = \dfrac{44}{4} \\[5ex] n = 11 + 1 \\[3ex] n = 12 \\[5ex] SAS = \dfrac{n(a + p)}{2} \\[5ex] SAS = \dfrac{12(1 + 45)}{2} \\[5ex] = 6(46) \\[3ex] = 276 $
(25.) In the parabola with the equation $y = x^2 + 2x - 3$, with an axis of symmetry at $x = -1$, what is the ordered pair that has the same y-value as the ordered pair (−3, 0)?

$ a.\;\; (3, 0) \\[3ex] b.\;\; (2, 0) \\[3ex] c.\;\; (1, 0) \\[3ex] d.\;\; (4, 0) \\[3ex] $

$ \text{For the ordered pair: } (-3, 0) \\[3ex] y = 0 \\[3ex] \text{For the parabola: } y = x^2 + 2x - 3 \\[3ex] 0 = x^2 + 2x - 3 \\[3ex] (x + 3)(x - 1) = 0 \\[3ex] x + 3 = 0 \hspace{2em}OR\hspace{2em} x - 1 = 0 \\[3ex] x = -3 \hspace{2em}OR\hspace{2em} x = 1 \\[3ex] x-intercepts = (-3, 0) \text{ and } (1, 0) \\[3ex] (-3, 0)...\text{Given} \\[3ex] \therefore \text{ the other one is } (1, 0) $
(26.) What is the value of $\displaystyle{\lim_{x \to 5}} (3x - 7)$

$ a.\;\; 8 \\[3ex] b.\;\; -8 \\[3ex] c.\;\; 5 \\[3ex] d.\;\; -5 \\[3ex] $

$ \displaystyle{\lim_{x \to 5}} (3x - 7) \\[3ex] = 3(5) - 7 \\[3ex] = 8 $
(27.) Suppose $x + y = 3, \hspace{1em} x^2 + y^2 = 13$.
Find the value of xy

$ a.\;\; 39 \\[3ex] b.\;\; -2 \\[3ex] c.\;\; 24 \\[3ex] d.\;\; -6 \\[3ex] $

$ x + y = 3...eqn.(1) \\[3ex] x^2 + y^2 = 13...eqn.(2) \\[5ex] (x + y)^2 \\[3ex] = (x + y)(x + y) \\[3ex] = x^2 + xy + xy + y^2 \\[3ex] = x^2 + 2xy + y^2 \\[3ex] = x^2 + y^2 + 2xy \\[3ex] \text{So, } (x + y)^2 = x^2 + y^2 + 2xy \\[3ex] 2xy = (x + y)^2 - (x^2 + y^2) \\[3ex] \text{Substitute for eqn.(1) and eqn.(2)} \\[3ex] 2xy = 3^2 - 13 \\[3ex] 2xy = 9 - 13 \\[3ex] xy = -\dfrac{4}{2} \\[5ex] xy = -2 $
(28.) The arithmetic mean of 14 numbers is what percent of the sum of the same 14 numbers?
(Answer must be decimal to the nearest hundredth.)

$ a.\;\; 7.69\% \\[3ex] b.\;\; 8.33\% \\[3ex] c.\;\; 7.14\% \\[3ex] d.\;\; 5.88\% \\[3ex] $

$ \text{Mean} = \dfrac{\text{Sum}}{\text{Sample Size}} \\[5ex] \implies \\[3ex] \bar{x} = \dfrac{\Sigma x}{n} \\[5ex] \bar{x} = \dfrac{\Sigma x}{14} \\[5ex] \bar{x} = \dfrac{1}{14} * \Sigma x \\[5ex] \text{Convert } \dfrac{1}{14} \text{ to percent} \\[5ex] \dfrac{1}{14} * 100 \\[5ex] = \dfrac{50}{7} \\[5ex] \approx 7.14\% $
(29.) Find the probability of getting 3 aces out of a deck of 52 cards if 5 cards are to be drawn at a time.

$ a.\;\; _4C_3\\[3ex] b.\;\; \dfrac{_4C_3 * _{52}C_2}{_{52}C_5} \\[5ex] c.\;\; \dfrac{_4C_3 * _{48}C_2}{_{52}C_5} \\[5ex] d.\;\; \dfrac{_{52}C_3}{_{52}C_5} \\[5ex] $

1st: 5 cards must be drawn from 52 cards
Number of ways of drawing 5 cards from 52 cards = $_{52}C_5$

2nd: 3 of the 5 cards must be aces
In a deck of 52 cards, there are 4 aces
So, we need to select 3 of those 4 aces
Number of ways of drawing 3 aces from 4 aces = $_4C_3$

3rd: The remaining 2 cards must be non-aces
The 2 non-aces cards are selected from 48 (52 − 4) non-aces
Number of ways of drawing 2 non-aces from 48 non-aces = $_{48}C_2$

∴ The probability of getting 3 aces out of a deck of 52 cards if 5 cards are to be drawn at a time = $\dfrac{_4C_3 * _{48}C_2}{_{52}C_5}$
(30.) What is the derivative of the trigonometric function $\sec\theta$

$ a.\;\; (\sec\theta)^2\; d\theta \\[3ex] b.\;\; -(\csc\theta)^2\; d\theta \\[3ex] c.\;\; \sec\theta\tan\theta\; d\theta \\[3ex] d.\;\; -\csc\theta\cot\theta\; d\theta \\[3ex] $

(31.) Given that $81^m = 3$ and $m^n = 64$.
Find the value of mn.

$ a.\;\; -\dfrac{1}{2} \\[5ex] b.\;\; -1 \\[3ex] c.\;\; -\dfrac{3}{4} \\[5ex] d.\;\; -\dfrac{1}{4} \\[5ex] $

$ 81^m = 3 \\[3ex] 3^{(4)m} = 3^1 \\[3ex] 3^{4m} = 3^1 \\[3ex] \text{same base; equate exponents} \\[3ex] 4m = 1 \\[3ex] m = \dfrac{1}{4} \\[5ex] m^n = 64 \\[3ex] \left(\dfrac{1}{4}\right)^n = 4^3 \\[5ex] 4^{(-1)n} = 4^3 \\[3ex] \text{same base; equate exponents} \\[3ex] -n = 3 \\[3ex] n = -3 \\[5ex] mn = \dfrac{1}{4} * -3 \\[5ex] = -\dfrac{3}{4} $
(32.) If $\log_{10} x + \log_{10} 8 = \log_{10} 16$, then x is equal to .......

$ a.\;\; \dfrac{1}{2} \\[5ex] b.\;\; 2 \\[3ex] c.\;\; 4 \\[3ex] d.\;\; 8 \\[3ex] $

$ \log x + \log 8 = \log 16 \\[3ex] \log{8x} = \log 16 ...Law\;1...Log \\[3ex] \text{same log base; equate terms} \\[3ex] 8x = 16 \\[3ex] x = \dfrac{16}{8} \\[5ex] x = 2 $
(33.) Given that $\displaystyle{\lim_{x \to 3+}} f(x)$, what is the $\displaystyle{\lim_{x \to 3+}} f(x)$?
This question is incomplete. If you have the complete question, please contact me.

$ a.\;\; -2 \\[3ex] b.\;\; -2 \\[3ex] c.\;\; 0 \\[3ex] d.\;\; \text{does not exist} \\[3ex] $

This question is incomplete. If you have the complete question, please contact me.
(34.) Given the equation $4^3 = |2y + 6|$, what is a possible real value of y?

$ a.\;\; -35 \\[3ex] b.\;\; y \text{ has no real values} \\[3ex] c.\;\; \sqrt[3]{2x - 6} \\[3ex] d.\;\; -32 \\[3ex] $

$ 4^3 = |2y + 6| \\[3ex] |2y + 6| = 64 \\[3ex] (2y + 6) = 64 \hspace{2em}OR\hspace{2em} -(2y + 6) = 64...\text{Absolute Values} \\[3ex] 2y + 6 = 64 \hspace{2em}OR\hspace{2em} 2y + 6 = -64 \\[3ex] 2y = 64 - 6 \hspace{2em}OR\hspace{2em} 2y = -64 - 6 \\[3ex] 2y = 58 \hspace{2em}OR\hspace{2em} 2y = -70 \\[3ex] y = \dfrac{58}{2} \hspace{2em}OR\hspace{2em} y = -\dfrac{70}{2} \\[5ex] y = 29 \hspace{2em}OR\hspace{2em} y = -35 $
(35.) What is the equivalent of $\dfrac{\cot\theta}{\tan\theta}$

$ a.\;\; \dfrac{\sin\theta}{\cos\theta} \\[5ex] b.\;\; \dfrac{\cos^2\theta}{\sin^2\theta} \\[5ex] c.\;\; 1 \\[3ex] d.\;\; \dfrac{\sin^2\theta}{\cos^2\theta} \\[5ex] $

$ \dfrac{\cot\theta}{\tan\theta} \\[5ex] = \cot\theta \div \tan\theta \\[3ex] = \dfrac{1}{\tan\theta} * \dfrac{1}{\tan\theta} ...\text{Reciprocal Identity} \\[5ex] = \dfrac{\cos\theta}{\sin\theta} * \dfrac{\cos\theta}{\sin\theta} ...\text{Quotient Identity} \\[5ex] = \dfrac{\cos^2\theta}{\sin^2\theta} $
(36.) The equation of a parabola having its focus at (0, p) and having its directrix the line $y = -p$ is:

$ a.\;\; y^2 = 4px \\[3ex] b.\;\; y^2 = -4px \\[3ex] c.\;\; x^2 = 4py \\[3ex] d.\;\; x^2 = -4py \\[3ex] $

A parabola is the set of all points equidistant from a fixed point (known as the focus) and a fixed line ( known as the directrix).
This means that the point, say (x, y) is equidistant from the focus and from the directrix.
In other words, the distance from the point to the focus is the distance from the point to the directrix.

$ \text{distance from the point to the focus} \\[3ex] \text{Point, }(x, y) \hspace{3em} \text{Focus, } (0, p) \\[3ex] \text{distance, }d = \sqrt{(x - 0)^2 + (y - p)^2} \\[3ex] d = \sqrt{x^2 + (y - p)^2} \\[5ex] \text{distance from the point to the directrix} \\[3ex] \text{Point, }(x, y) \hspace{3em} \text{Directrix, } y = -p \\[3ex] d = |y - (-p)| \\[3ex] d = |y + p| \\[5ex] d = d \implies \\[3ex] \sqrt{x^2 + (y - p)^2} = |y + p| \\[3ex] x^2 + [(y - p)(y - p)] = (y + p)^2 \\[3ex] x^2 + y^2 - py - py + p^2 = (y + p)(y + p) \\[3ex] x^2 + y^2 + p^2 - 2py = y^2 + py + py + p^2 \\[3ex] x^2 - 2py = 2py \\[3ex] x^2 = 2py + 2py \\[3ex] x^2 = 4py $
(37.) Given the series 1, 5, 13, 29, ..., what is the 6th term?

$ a.\;\; 106 \\[3ex] b.\;\; 53 \\[3ex] c.\;\; 61 \\[3ex] d.\;\; 125 \\[3ex] $

$ 1, 5, 13, 29, ... \\[3ex] 1, 1 + 4, 5 + 8, 13 + 16, 29 + 32, ... \\[3ex] 1, 1 + 2(2), 5 + 4(2), 13 + 8(2), 29 + 16(2), ... \\[3ex] \text{5th term} = 29 + 32 = 61 \\[3ex] \text{6th term} = 61 + 32(2) \\[3ex] = 61 + 64 \\[3ex] = 125 $
(38.) What is the value of $\displaystyle{\lim_{x \to 1^{-1}}} \sqrt{(1 - x^2)}$ ?

$ a.\;\; -0.5 \\[3ex] b.\;\; 0.5 \\[3ex] c.\;\; 0 \\[3ex] d.\;\; \text{does not exist} \\[3ex] $

$ \displaystyle{\lim_{x \to 1^{-1}}} \sqrt{(1 - x^2)} \\[3ex] \text{Assume } x = 0.9999999 ...\text{approaching 1 from the left} \\[3ex] = \sqrt{(1 - 0.9999999^2)} \\[3ex] = \sqrt{1 - 1}...0.9999999^2 \approx 1 \\[3ex] = \sqrt{0} \\[3ex] = 0 $
(39.) Ms. Anna would be giving awards to 4 out of her students in section Narra.
If each student can receive at most one award and section Narra is composed of 30 students, how many possible selections are there?

$ a.\;\; 60 \\[3ex] b.\;\; 120 \\[3ex] c.\;\; 27,405 \\[3ex] d.\;\; 657,720 \\[3ex] $

The question did not specify whether the awards are distinct (in which case, it would be Permutation) or identical (in which case, it would be Combination).
So, we shall assume that the awards are identical.

$ C(n, r) = \dfrac{n!}{(n - r)! * r!} \\[5ex] C(30, 4) = \dfrac{30!}{(30 - 4)! * 4!} \\[5ex] = \dfrac{30 * 29 * 28 * 27 * 26!}{26! * 4 * 3 * 2 * 1} \\[5ex] = 15 * 29 * 7 * 9 \\[3ex] = 27,405 \text{ selections} $
(40.) What is the value of the following integral of the trigonometric function: $\displaystyle\int \tan u \;du$?

$ a.\;\; \sec^2 u + c \\[3ex] b.\;\; -\csc^2 u + c \\[3ex] c.\;\; \ln|\sec u| + c \\[3ex] d.\;\; \ln|\sec u + \tan u| + c \\[3ex] $

$ \displaystyle\int \tan u \;du \\[3ex] = \displaystyle\int \dfrac{\sin u}{\cos u} \; du ...\text{Quotient Identity} \\[5ex] \underline{\text{Integration by Algebraic Substitution}} \\[3ex] \text{Let } p = \cos u \\[3ex] \dfrac{dp}{du} = -\sin u \\[5ex] \dfrac{du}{dp} = -\dfrac{1}{\sin u} \\[5ex] du = -\dfrac{dp}{\sin u} \\[5ex] \implies \\[3ex] = \displaystyle\int \dfrac{\sin u}{p} * -\dfrac{dp}{\sin u} \\[5ex] = -\displaystyle\int \dfrac{1}{p} \; dp \\[5ex] = -\ln |p| + C \\[3ex] = - \ln |\cos u| + C \\[3ex] = \ln |(\cos u)^{-1}| + C ...Law\;5...Log \\[3ex] = \ln \left|\dfrac{1}{\cos u}\right| + C \\[5ex] = \ln |\sec u| + C ...\text{Reciprocal Identity} $




Top




(1.)

$ a.\;\; \\[3ex] b.\;\; \\[3ex] c.\;\; \\[3ex] d.\;\; \\[3ex] $

Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.