Please Read Me.

Expressions and Equations

Welcome to Our Site


I greet you this day,

These are the solutions to MALTA past questions on Expressions and Equations.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the Mathematics papers of MALTA, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

These are the notable notes regarding factoring

Factoring Formulas

$ \underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex] (1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex] \underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex] (2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex] \underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex] (3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[4ex] $

Formulas Relating to Quadratic Expressions and Equations

$ (1.)\;\; Discriminant = b^2 - 4ac \\[5ex] (2.)\;\; \text{Quadratic Formula}:\;\; x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\[6ex] (3.)\;\; \text{Sum of roots} = -\dfrac{b}{a} \\[5ex] (4.)\;\; \text{Product of roots} = \dfrac{c}{a} $
(1.) (a.) Expand and simplify: $2x(4x - 5y) + 6(x^2 - 2y)$

(b.) Make x the subject of the formula: $q = \sqrt{\dfrac{px + y}{x}}$


$ (a.) \\[3ex] 2x(4x - 5y) + 6(x^2 - 2y) \\[3ex] 8x^2 - 10xy + 6x^2 - 12y \\[3ex] 14x^2 - 10xy - 12y \\[5ex] (b.) \\[3ex] q = \sqrt{\dfrac{px + y}{x}} \\[5ex] \text{Square both sides} \\[3ex] q^2 = \left(\sqrt{\dfrac{px + y}{x}}\right)^2 \\[5ex] q^2 = \dfrac{px + y}{x} \\[5ex] LCD = x \\[3ex] \text{Multiply both sides by the LCD} \\[3ex] x \times q^2 = x \times \dfrac{px + y}{x} \\[5ex] xq^2 = px + y \\[3ex] \text{Subtract } px \text{ from both sides} \\[3ex] xq^2 - px = px + y - px \\[3ex] xq^2 - px = y \\[3ex] \text{Factor the LHS by the GCF}, x \\[3ex] x(q^2 - p) = y \\[3ex] \text{Divide both sides by } q^2 - p \\[3ex] \dfrac{x(q^2 - p)}{q^2 - p} = \dfrac{y}{q^2 - p} \\[5ex] x = \dfrac{y}{q^2 - p} $
(2.) (a.) Find the value of $15a - 3b - c$, when $a = 4$, $b = -6$ and $c = 10$.

(b.) Simplify:
(i.) $-2t \times 3t$
(ii.) $3(x + 2) + 5(1 + x)$

(c.) Solve: $6x - 15 = 4x - 3$


$ (a.) \\[3ex] a = 4 \\[3ex] b = -6 \\[3ex] c = 10 \\[3ex] 15a - 3b - c \\[3ex] = 15(4) - 3(-6) - 10 \\[3ex] = 60 + 18 - 10 \\[3ex] = 68 \\[3ex] (b.)(i.) \\[3ex] -2t \times 3t = -6t^2 \\[3ex] (ii.) \\[3ex] 3(x + 2) + 5(1 + x) \\[3ex] 3x + 6 + 5 + 5x \\[3ex] 8x + 11 \\[3ex] (c.) \\[3ex] 6x - 15 = 4x - 3 \\[3ex] 6x - 4x = -3 + 15 \\[3ex] 2x = 12 \\[3ex] x = \dfrac{12}{2} \\[5ex] x = 6 \\[3ex] $ Check
$x = 6$
LHS RHS
$ 6x - 15 \\[3ex] 6(6) - 15 \\[3ex] 36 - 15 \\[3ex] 21 $ $ 4x - 3 \\[3ex] 4(6) - 3 \\[3ex] 24 - 3 \\[3ex] 21 $
(3.) (a.) Solve: $\dfrac{(4x - 5)}{(8x - 15)} = \dfrac{2x}{4x - 5}$

(b.) Make x the subject of the formula: $q = \sqrt{\dfrac{p(x + y)}{x}}$


$ (a.) \\[3ex] \dfrac{(4x - 5)}{(8x - 15)} = \dfrac{2x}{4x - 5} \\[5ex] \text{Cross Multiply} \\[3ex] (4x - 5)(4x - 5) = 2x(8x - 15) \\[3ex] 16x^2 - 20x - 20x + 25 = 16x^2 - 30x \\[3ex] 16x^2 - 40x + 25 - 16x^2 + 30x = 0 \\[3ex] -10x = -25 \\[3ex] x = \dfrac{-25}{-10} \\[5ex] x = \dfrac{5}{2} \\[5ex] $ Check
$x = \dfrac{5}{2}$
LHS RHS
$ \dfrac{(4x - 5)}{(8x - 15)} \\[5ex] (4x - 5) \div (8x - 15) \\[3ex] \left[4\left(\dfrac{5}{2}\right) - 5\right] \div \left[8\left(\dfrac{5}{2}\right) - 15\right] \\[5ex] (10 - 5) \div (20 - 15) \\[3ex] 5 \div 5 \\[3ex] 1 $ $ \dfrac{2x}{4x - 5} \\[5ex] 2x \div (4x - 5) \\[3ex] 2\left(\dfrac{5}{2}\right) \div \left[4\left(\dfrac{5}{2}\right) - 5\right] \\[5ex] 5 \div (10 - 5) \\[3ex] 5 \div 5 \\[3ex] 1 $

$ (b.) \\[3ex] q = \sqrt{\dfrac{p(x + y)}{x}} \\[5ex] q^2 = \dfrac{p(x + y)}{x} \\[5ex] xq^2 = px + py \\[3ex] xq^2 - px = py \\[3ex] x(q^2 - p) = py \\[3ex] x = \dfrac{py}{q^2 - p} $
(4.) (a.) (i.) Factorise completely: $3x^2 - 15xy$
(ii.) Use your answer in (i.) to simplify: $\dfrac{3x^2 - 15xy}{6x}$

(b.) Write as a single fraction: $\dfrac{4x}{5} - \dfrac{x + 1}{4}$


$ (a.) \\[3ex] 3x^2 - 15xy \\[3ex] GCF = 3x \\[3ex] = 3x(x - 5y) \\[3ex] (b.) \\[3ex] \dfrac{3x^2 - 15xy}{6x} \\[5ex] = \dfrac{3x(x - 5y)}{6x} \\[5ex] = \dfrac{x - 5y}{2} \\[5ex] (c.) \\[3ex] \dfrac{4x}{5} - \dfrac{x + 1}{4} \\[5ex] LCD = 20 \\[3ex] = \dfrac{4(4x)}{20} - \dfrac{5(x + 1)}{20} \\[5ex] = \dfrac{16x - 5x - 5}{20} \\[5ex] = \dfrac{11x - 5}{20} $
(5.) (a.) Factorise:
(i.) $x^2 + 6x + 8$
(ii.) $x^2 - 16$

(b.) Simplify as a single fraction: $\dfrac{x^2 + 6x + 8}{x^2 - 16} - \dfrac{1}{x + 5}$


$ (a.) (i.) \\[3ex] x^2 + 6x + 8 \\[3ex] (x + 4)(x + 2)...\text{Factor Quadratic Trinomial} \\[3ex] (ii.) \\[3ex] x^2 - 16 \\[3ex] x^2 - 4^2 \\[3ex] (x + 4)(x - 4) ...\text{Difference of Two Squares} \\[3ex] (b.) \\[3ex] \dfrac{x^2 + 6x + 8}{x^2 - 16} - \dfrac{1}{x + 5} \\[5ex] \dfrac{(x + 4)(x + 2)}{(x + 4)(x - 4)} - \dfrac{1}{x + 5} \\[5ex] \dfrac{x + 2}{x - 4} - \dfrac{1}{x + 5} \\[5ex] \dfrac{(x + 2)(x + 5)}{(x - 4)(x + 5)} - \dfrac{x - 4}{(x - 4)(x + 5)} \\[5ex] \dfrac{(x + 2)(x + 5) - (x - 4)}{(x - 4)(x + 5)} \\[5ex] \dfrac{x^2 + 5x + 2x + 10 - x + 4}{(x - 4)(x + 5)} \\[5ex] \dfrac{x^2 + 6x + 14}{(x - 4)(x + 5)} $
(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.