Expressions and Equations
Welcome to Our Site
I greet you this day,
These are the solutions to MALTA past questions on Expressions and Equations.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified
of upcoming livestreams.
You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the
Mathematics papers of MALTA, please consider making a donation:
Cash App: $ ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
These are the notable notes regarding factoring
Factoring Formulas
$
\underline{Difference\;\;of\;\;Two\;\;Squares} \\[3ex]
(1.)\;\;x^2 - y^2 = (x + y)(x - y) \\[5ex]
\underline{Difference\;\;of\;\;Two\;\;Cubes} \\[3ex]
(2.)\;\; x^3 - y^3 = (x - y)(x^2 + xy + y^2) \\[5ex]
\underline{Sum\;\;of\;\;Two\;\;Cubes} \\[3ex]
(3.)\;\; x^3 + y^3 = (x + y)(x^2 - xy + y^2) \\[4ex]
$
Formulas Relating to Quadratic Expressions and Equations
$
(1.)\;\; Discriminant = b^2 - 4ac \\[5ex]
(2.)\;\; \text{Quadratic Formula}:\;\; x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\[6ex]
(3.)\;\; \text{Sum of roots} = -\dfrac{b}{a} \\[5ex]
(4.)\;\; \text{Product of roots} = \dfrac{c}{a}
$
(1.) (a.) Expand and simplify: $2x(4x - 5y) + 6(x^2 - 2y)$
(b.) Make
x the subject of the formula: $q = \sqrt{\dfrac{px + y}{x}}$
Show/Hide Answer
$
(a.) \\[3ex]
2x(4x - 5y) + 6(x^2 - 2y) \\[3ex]
8x^2 - 10xy + 6x^2 - 12y \\[3ex]
14x^2 - 10xy - 12y \\[5ex]
(b.) \\[3ex]
q = \sqrt{\dfrac{px + y}{x}} \\[5ex]
\text{Square both sides} \\[3ex]
q^2 = \left(\sqrt{\dfrac{px + y}{x}}\right)^2 \\[5ex]
q^2 = \dfrac{px + y}{x} \\[5ex]
LCD = x \\[3ex]
\text{Multiply both sides by the LCD} \\[3ex]
x \times q^2 = x \times \dfrac{px + y}{x} \\[5ex]
xq^2 = px + y \\[3ex]
\text{Subtract } px \text{ from both sides} \\[3ex]
xq^2 - px = px + y - px \\[3ex]
xq^2 - px = y \\[3ex]
\text{Factor the LHS by the GCF}, x \\[3ex]
x(q^2 - p) = y \\[3ex]
\text{Divide both sides by } q^2 - p \\[3ex]
\dfrac{x(q^2 - p)}{q^2 - p} = \dfrac{y}{q^2 - p} \\[5ex]
x = \dfrac{y}{q^2 - p}
$
(2.) (a.) Find the value of $15a - 3b - c$, when $a = 4$, $b = -6$ and $c = 10$.
(b.) Simplify:
(i.) $-2t \times 3t$
(ii.) $3(x + 2) + 5(1 + x)$
(c.) Solve: $6x - 15 = 4x - 3$
Show/Hide Answer
$
(a.) \\[3ex]
a = 4 \\[3ex]
b = -6 \\[3ex]
c = 10 \\[3ex]
15a - 3b - c \\[3ex]
= 15(4) - 3(-6) - 10 \\[3ex]
= 60 + 18 - 10 \\[3ex]
= 68 \\[3ex]
(b.)(i.) \\[3ex]
-2t \times 3t = -6t^2 \\[3ex]
(ii.) \\[3ex]
3(x + 2) + 5(1 + x) \\[3ex]
3x + 6 + 5 + 5x \\[3ex]
8x + 11 \\[3ex]
(c.) \\[3ex]
6x - 15 = 4x - 3 \\[3ex]
6x - 4x = -3 + 15 \\[3ex]
2x = 12 \\[3ex]
x = \dfrac{12}{2} \\[5ex]
x = 6 \\[3ex]
$
Check
$x = 6$
LHS
RHS
$
6x - 15 \\[3ex]
6(6) - 15 \\[3ex]
36 - 15 \\[3ex]
21
$
$
4x - 3 \\[3ex]
4(6) - 3 \\[3ex]
24 - 3 \\[3ex]
21
$
(3.) (a.) Solve: $\dfrac{(4x - 5)}{(8x - 15)} = \dfrac{2x}{4x - 5}$
(b.) Make
x the subject of the formula: $q = \sqrt{\dfrac{p(x + y)}{x}}$
Show/Hide Answer
$
(a.) \\[3ex]
\dfrac{(4x - 5)}{(8x - 15)} = \dfrac{2x}{4x - 5} \\[5ex]
\text{Cross Multiply} \\[3ex]
(4x - 5)(4x - 5) = 2x(8x - 15) \\[3ex]
16x^2 - 20x - 20x + 25 = 16x^2 - 30x \\[3ex]
16x^2 - 40x + 25 - 16x^2 + 30x = 0 \\[3ex]
-10x = -25 \\[3ex]
x = \dfrac{-25}{-10} \\[5ex]
x = \dfrac{5}{2} \\[5ex]
$
Check
$x = \dfrac{5}{2}$
LHS
RHS
$
\dfrac{(4x - 5)}{(8x - 15)} \\[5ex]
(4x - 5) \div (8x - 15) \\[3ex]
\left[4\left(\dfrac{5}{2}\right) - 5\right] \div \left[8\left(\dfrac{5}{2}\right) - 15\right] \\[5ex]
(10 - 5) \div (20 - 15) \\[3ex]
5 \div 5 \\[3ex]
1
$
$
\dfrac{2x}{4x - 5} \\[5ex]
2x \div (4x - 5) \\[3ex]
2\left(\dfrac{5}{2}\right) \div \left[4\left(\dfrac{5}{2}\right) - 5\right] \\[5ex]
5 \div (10 - 5) \\[3ex]
5 \div 5 \\[3ex]
1
$
$
(b.) \\[3ex]
q = \sqrt{\dfrac{p(x + y)}{x}} \\[5ex]
q^2 = \dfrac{p(x + y)}{x} \\[5ex]
xq^2 = px + py \\[3ex]
xq^2 - px = py \\[3ex]
x(q^2 - p) = py \\[3ex]
x = \dfrac{py}{q^2 - p}
$
(4.) (a.) (i.) Factorise completely: $3x^2 - 15xy$
(ii.) Use your answer in (i.) to simplify: $\dfrac{3x^2 - 15xy}{6x}$
(b.) Write as a single fraction: $\dfrac{4x}{5} - \dfrac{x + 1}{4}$
Show/Hide Answer
$
(a.) \\[3ex]
3x^2 - 15xy \\[3ex]
GCF = 3x \\[3ex]
= 3x(x - 5y) \\[3ex]
(b.) \\[3ex]
\dfrac{3x^2 - 15xy}{6x} \\[5ex]
= \dfrac{3x(x - 5y)}{6x} \\[5ex]
= \dfrac{x - 5y}{2} \\[5ex]
(c.) \\[3ex]
\dfrac{4x}{5} - \dfrac{x + 1}{4} \\[5ex]
LCD = 20 \\[3ex]
= \dfrac{4(4x)}{20} - \dfrac{5(x + 1)}{20} \\[5ex]
= \dfrac{16x - 5x - 5}{20} \\[5ex]
= \dfrac{11x - 5}{20}
$
(5.) (a.) Factorise:
(i.) $x^2 + 6x + 8$
(ii.) $x^2 - 16$
(b.) Simplify as a single fraction: $\dfrac{x^2 + 6x + 8}{x^2 - 16} - \dfrac{1}{x + 5}$
Show/Hide Answer
$
(a.) (i.) \\[3ex]
x^2 + 6x + 8 \\[3ex]
(x + 4)(x + 2)...\text{Factor Quadratic Trinomial} \\[3ex]
(ii.) \\[3ex]
x^2 - 16 \\[3ex]
x^2 - 4^2 \\[3ex]
(x + 4)(x - 4) ...\text{Difference of Two Squares} \\[3ex]
(b.) \\[3ex]
\dfrac{x^2 + 6x + 8}{x^2 - 16} - \dfrac{1}{x + 5} \\[5ex]
\dfrac{(x + 4)(x + 2)}{(x + 4)(x - 4)} - \dfrac{1}{x + 5} \\[5ex]
\dfrac{x + 2}{x - 4} - \dfrac{1}{x + 5} \\[5ex]
\dfrac{(x + 2)(x + 5)}{(x - 4)(x + 5)} - \dfrac{x - 4}{(x - 4)(x + 5)} \\[5ex]
\dfrac{(x + 2)(x + 5) - (x - 4)}{(x - 4)(x + 5)} \\[5ex]
\dfrac{x^2 + 5x + 2x + 10 - x + 4}{(x - 4)(x + 5)} \\[5ex]
\dfrac{x^2 + 6x + 14}{(x - 4)(x + 5)}
$