Please Read Me.

Combinatorics

Welcome to Our Site


I greet you this day,

These are the solutions to questions on the topics in Combinatorics.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
If you find these resources valuable/helpful, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.


Please NOTE: For applicable questions involving factorials, permutation, and/or combinations, these are the steps to use the functions:

Calculator Combinatorics

Formulas

Say:

n is the number of items (n items)

c and d are the number of duplicate items

n! is read as n-factorial

The number of permutations of nitems is n!

The number of permutations of duplicate items is $\dfrac{n!}{c! * d!}$

The number of permutations of $n$ total items taking $r$ items at a time is $^nP_r \;\;\;or\;\;\; _nP_r \;\;\;or\;\;\; P(n, r)$

The number of combinations of $n$ total items taking $r$ items at a time is $^nC_r \;\;\;or\;\;\; _nC_r \;\;\;or\;\;\; C(n, r) \;\;\;or\;\;\; \displaystyle{\binom{n}{r}}$

$ (1.)\:\: 0! = 1 \\[4ex] (2.)\:\: n! = n * (n - 1) * (n - 2) * (n - 3) * ... * 1 \\[4ex] (3.)\;\; n! = n * (n - 1)! \\[4ex] (4.)\;\; n! = n * (n - 1) * (n - 2)!...\text{and so on and so forth} \\[4ex] (5.)\;\; (n - 1)! = (n - 1) * (n - 2)!...\text{and so on and so forth} \\[4ex] (6.)\;\; (n - 2)! = (n - 2) * (n - 3) * (n - 4)!...\text{and so on and so forth} \\[4ex] (7.)\;\; (n - 3)! = (n - 3) * (n - 4) * (n - 5)!...\text{and so on and so forth} \\[4ex] (8.)\;\; (n + 1)! = (n + 1) * n!...\text{and so on and so forth} \\[4ex] (9.)\;\; (n + 2)! = (n + 2) * (n + 1) * n!...\text{and so on and so forth} \\[4ex] (10.)\;\; (n + 3)! = (n + 3) * (n + 2) * (n + 1) * n!...\text{and so on and so forth} \\[4ex] (11.)\:\: P(n, r) = \dfrac{n!}{(n - r)!} \\[7ex] (12.)\:\: C(n, r) = \dfrac{n!}{(n - r)!r!} \\[7ex] (13.)\;\; P(n, r) = n! * C(n, r) \\[4ex] (14.)\;\; C(n, r) = C(n, n - r) \\[4ex] (15.)\;\; (n - r) * P(n, r) = P(n, r + 1) \\[4ex] (16.)\;\; Number\;\;of\;\;circular\;\;permutations = (n - 1)! \\[4ex] $ Case 1:
Given: a certain number of digits/letters say p
(14.) The number of unique number of digits/letters say c digits/letters that can be formed if the digits/letters may be repeated is $p^c$ digits/letters.

(15.) The number of unique number of digits/letters say c digits/letters that can be formed if the digits/letters may not be repeated is $P(p, c)$ digits/letters.

Case 2:
Given: a certain number of people or items in a linear random order say $n$
(16.) The number of ways in which two people or two items must be close together is $2 * (n - 1) * (n - 2)!$ ways

(1.) The ratio of the number of arrangements of $(2n + 2)$ different objects taken n objects at a time to the number of arrangements of $2n$ different objects taken n objects at a time is 14:5.
Find the value of n


Numerator: The number of arrangements of $(2n + 2)$ different objects taken n objects at a time is: $P(2n + 2), n$
Denominator: The number of arrangements of $2n$ different objects taken n objects at a time is: $P(2n, n)$

$ \underline{\text{Numerator}} \\[3ex] P(2n + 2, n) \\[3ex] = \dfrac{(2n + 2)!}{(2n + 2 - n)!} \\[5ex] = \dfrac{(2n + 2)!}{(n + 2)!} \\[5ex] (2n + 2)! \\[3ex] = (2n + 2)(2n + 2 - 1)(2n + 2 - 2)! \\[3ex] = (2n + 2)(2n + 1)(2n)! \\[5ex] (n + 2)! \\[3ex] = (n + 2)(n + 2 - 1)(n + 2 - 2)! \\[3ex] = (n + 2)(n + 1)(n)! \\[5ex] \implies \\[3ex] P(2n + 2, n) = \dfrac{(2n + 2)(2n + 1)(2n)!}{(n + 2)(n - 1)(n)!} \\[5ex] \underline{\text{Denominator}} \\[3ex] P(2n, n) \\[3ex] = \dfrac{(2n)!}{(2n -n)!} \\[5ex] = \dfrac{(2n)!}{n!} \\[5ex] \underline{\text{Ratio: }Numerator \div Denominator} \\[3ex] P(2n + 2, n) \div P(2n, n) \\[3ex] \dfrac{(2n + 2)(2n + 1)(2n)!}{(n + 2)(n + 1)(n)!} \div \dfrac{(2n)!}{n!} \\[5ex] \dfrac{2(n + 1)(2n + 1)(2n)!}{(n + 2)(n + 1)(n)!} * \dfrac{n!}{(2n)!} \\[5ex] \dfrac{2(2n + 1)}{(n + 2)} \\[5ex] \dfrac{4n + 2}{n + 2} \\[5ex] \text{This ratio } = \dfrac{14}{5} \\[5ex] \implies \\[3ex] \dfrac{4n + 2}{n + 2} = \dfrac{14}{5} \\[5ex] 5(4n + 2) = 14(n + 2) \\[3ex] 20n + 10 = 14n + 28 \\[3ex] 20n - 14n = 28 - 10 \\[3ex] 6n = 18 \\[3ex] n = 3 $

Calculator 1
(2.) Using Pascal's Triangle only, expand and simplify completely: $(2x - 2y)^6$


$$ \begin{array}{c} 1 \\[2ex] 1 \quad 1 \\[2ex] 1 \quad 2 \quad 1 \\[2ex] 1 \quad 3 \quad 3 \quad 1 \\[2ex] 1 \quad 4 \quad 6 \quad 4 \quad 1 \\[2ex] 1 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1 \\[2ex] 1 \quad 6 \quad 15 \quad 20 \quad 15 \quad 6 \quad 1 \\[2ex] \end{array} $$ $ (2x - 2y)^6 \\[3ex] = 1(2x)^6(-2y)^0 + 6(2x)^5(-2y)^1 + 15(2x)^4(-2y)^2 + 20(2x)^3(-2y)^3 + 15(2x)^2(-2y)^4 + 6(2x)^1(-2y)^5 + 1(2x)^0(-2y)^6 \\[3ex] = 64x^6 + 6(32)(-2)(x^5y) + 15(16)(4)(x^4y^2) + 20(8)(-8)x^3y^3 + 15(4)(16)(x^2y^4) + 6(2)(-32)(xy^5) + 64y^6 \\[3ex] = 64x^6 - 384x^5y + 960x^4y^2 - 1280x^3y^3 + 960x^2y^4 - 384xy^5 + 64y^6 $
(3.)

(4.)

(5.)

(6.)

(7.)

(8.)


(9.)

(10.)


(11.)

(12.)


(13.)

(14.)


(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)

(22.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.