I greet you this day,
These are the solutions to Mathematics questions on Differential Calculus.
The TI-84 Plus CE shall be used for applicable questions.
If you find these resources valuable and helpful in your learning,
please consider making a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive
criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
$ \text{Function} = f(x) \\[3ex] \text{Difference Quotient} = DQ \\[3ex] \text{Derivative} = f'(x) = \dfrac{dy}{dx} = y' \\[5ex] (1.)\;\; DQ = \dfrac{f(x + h) - f(x)}{h} \\[5ex] (2.)\;\; \dfrac{dy}{dx} = \displaystyle{\lim_{h \to 0}} \dfrac{f(x + h) - f(x)}{h} \\[5ex] (3.)\;\; f'(x) = \displaystyle{\lim_{h \to 0}} DQ $
$ a, n \:\:are\:\:constants \\[3ex] (1.)\:\: \underline{Power\;\;Rule} \\[3ex] y = ax^n \\[3ex] \dfrac{dy}{dx} = nax^{n - 1} \\[7ex] (2.)\:\: \underline{Sum/Difference\;\;Rule} \\[3ex] y = u \pm v \pm w \\[3ex] u = f(x);\:\: v = f(x);\;\; w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx} \\[7ex] (3.)\:\: \underline{Chain\;\;Rule} \\[3ex] y = f(u) \\[3ex] u = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(w) \\[3ex] w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dw} * \dfrac{dw}{dx} \\[7ex] ...and\;\;so\;\;on\;\;and\;\;so\;\;forth \\[5ex] (4.)\:\: \underline{Product\;\;Rule} \\[3ex] y = u * v \\[3ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = u\dfrac{dv}{dx} + v\dfrac{du}{dx} \\[7ex] (5.)\:\: \underline{Quotient\;\;Rule} \\[3ex] y = \dfrac{u}{v} \\[5ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{v\dfrac{du}{dx} - u\dfrac{dv}{dx}}{v^2} $
$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = e^x \\[3ex] \dfrac{dy}{dx} = e^x \\[7ex] (2.)\;\; y = e^{kx} \\[3ex] \dfrac{dy}{dx} = ke^{kx} \\[7ex] (3.)\;\; y = e^{-kx} \\[3ex] \dfrac{dy}{dx} = -ke^{kx} \\[7ex] (4.)\:\: y = a^x \\[3ex] \dfrac{dy}{dx} = a^x \ln a \\[7ex] $
$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = \ln x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (2.)\:\: y = \log_a x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] (3.)\:\: y = \ln |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (4.)\:\: y = \log_a |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] $
$ (1.)\:\: y = \sin x \\[3ex] \dfrac{dy}{dx} = \cos x \\[7ex] (2.)\:\: y = \cos x \\[3ex] \dfrac{dy}{dx} = -\sin x \\[7ex] (3.)\:\: y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 x \\[7ex] (4.)\:\: y = \csc x \\[3ex] \dfrac{dy}{dx} = -\csc x \cot x \\[7ex] (5.)\:\: y = \sec x \\[3ex] \dfrac{dy}{dx} = \sec x \tan x \\[7ex] (6.)\:\: y = \cot x \\[3ex] \dfrac{dy}{dx} = -\csc^2 x $
$ (1.)\:\: y = \sin^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^2}} \\[7ex] (2.)\:\: y = \cos^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{\sqrt{1 - x^2}} \\[7ex] (3.)\;\; y = \tan^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 + x^2} \\[7ex] (4.)\:\: y = \csc^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 - 1}} \\[7ex] (5.)\:\: y = \sec^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{|x|\sqrt{x^2 - 1}} \\[7ex] (6.)\;\; y = \cot^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{1 + x^2} \\[7ex] $
$ (1.)\:\: y = \sin hx \\[3ex] \dfrac{dy}{dx} = \cos hx \\[7ex] (2.)\:\: y = \cos hx \\[3ex] \dfrac{dy}{dx} = \sin hx \\[7ex] (3.)\;\; y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 hx \\[7ex] (4.)\;\; y = \csc hx \\[3ex] \dfrac{dy}{dx} = -\csc hx \cot hx \\[7ex] (5.)\;\; y = \sec hx \\[3ex] \dfrac{dy}{dx} = -\sec hx \tan hx \\[7ex] (6.)\;\; y = \cot hx \\[3ex] \dfrac{dy}{dx} = -\csc^2 hx \\[7ex] $
$ (1.)\:\: y = \sin h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 + 1}} \\[7ex] (2.)\:\: y = \cos h^{-1}x \;\;\;\;\;\;where:\;\; x\gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 - 1}} \\[7ex] (3.)\;\; y = \tan h^{-1}x \;\;\;\;\;\;where:\;\; |x| \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] (4.)\;\; y = \csc h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 + 1}} \\[7ex] (5.)\;\; y = \sec h^{-1}x \;\;\;\;\;\;where:\;\; 0\lt x \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{x\sqrt{1 - x^2}} \\[7ex] (6.)\;\; y = \cot h^{-1}x \;\;\;\;\;\;where:\;\; |x| \gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] $
$ (1.)\:\: y = |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{|x|}{x} \\[7ex] $
$ x_{n + 1} = x_n - \dfrac{f(x)}{f'(x)} $
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.