Please Read Me.

Differential Equations

Welcome to Our Site


I greet you this day,

These are the solutions to Mathematics questions on Differential Equations.
The TI-84 Plus CE shall be used for applicable questions.
If you find these resources valuable/helpful, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas and Notes

$ (1.) \text{ Linear First-Order Differential Equation for x in terms of y} \\[3ex] \dfrac{dx}{dy} + P(y)x = Q(y) \\[5ex] \mu(y) = e^{\displaystyle\int P(y)dy} \\[5ex] where \\[3ex] P(y)x \text{ is a function of } x, y \\[3ex] Q(y) \text{ is a function of } y \\[3ex] \mu(y) \text{ is the integrating factor} \\[3ex] $

(1.) Solve the differential equation $\dfrac{dy}{dx} = \dfrac{y}{x + y^3}$ for y > 0


$ \dfrac{dy}{dx} = \dfrac{y}{x + y^3} \\[5ex] \text{Solving in this form "as is" is challenging} \\[3ex] \text{Express as a Linear First-Order Differential Equation} \\[3ex] \dfrac{dx}{dy} = \dfrac{x + y^3}{y} \\[5ex] \dfrac{dx}{dy} = \dfrac{x}{y} + \dfrac{y^3}{y} \\[5ex] \dfrac{dx}{dy} - \dfrac{x}{y} = y^2...eqn.(1) \\[5ex] \text{Compare to: } \dfrac{dx}{dy} + P(y)x = Q(y) \\[5ex] where:\;\; P(y)x = -\dfrac{x}{y} \hspace{2em}and\hspace{2em} Q(y) = y^2 \\[5ex] \implies \\[3ex] P(y) = -\dfrac{1}{y} \\[5ex] \text{integrating factor} = \mu(y) = e^{\displaystyle\int P(y)dy} \\[5ex] \mu(y) = e^{\displaystyle\int -\dfrac{1}{y}dy} \\[5ex] = e^{-\ln |y|}...\text{Because } y \gt 0, \text{ discard the absolute value} \\[4ex] = e^{\ln(y^{-1})} \\[4ex] = y^{-1} \\[3ex] = \dfrac{1}{y} \\[5ex] \mu(y) * eqn.(1) \implies \\[3ex] \dfrac{1}{y}\left(\dfrac{dx}{dy} - \dfrac{x}{y}\right) = \dfrac{1}{y} * y^2 \\[5ex] \left(\dfrac{1}{y}\right)\left(\dfrac{dx}{dy}\right) - \dfrac{x}{y^2} = y \\[5ex] ................................................................................. \\[3ex] \left(\dfrac{1}{y}\right)\left(\dfrac{dx}{dy}\right) \\[5ex] \text{Let us find a relationship between the LHS and the integrating factor} \\[3ex] Let\;\; y = x * \mu(y) \\[3ex] y = x * \dfrac{1}{y} \\[5ex] y = \dfrac{x}{y} \\[5ex] y = x * \dfrac{1}{y} \\[5ex] \dfrac{dy}{dx} = x * -\dfrac{1}{y^2} + \dfrac{1}{y} * \dfrac{dx}{dy}...\text{Product Rule} \\[5ex] \dfrac{dy}{dx} = -\dfrac{x}{y^2} + \left(\dfrac{1}{y}\right)\left(\dfrac{dx}{dy}\right) \\[5ex] \implies \\[3ex] \left(\dfrac{1}{y}\right)\left(\dfrac{dx}{dy}\right) - \dfrac{x}{y^2} \\[5ex] = LHS \\[3ex] = \dfrac{dy}{dx}\;\;of\;\;\mu(y) \\[5ex] = \dfrac{dy}{dx}\;\;of\;\;\dfrac{x}{y} \\[5ex] = \dfrac{d}{dx}\left(\dfrac{x}{y}\right) \\[5ex] ................................................................................. \\[3ex] \text{Substitute for the LHS} \\[3ex] \dfrac{x}{y} = y \\[5ex] \text{Integrate both sides wrt y} \\[3ex] \displaystyle\int \dfrac{d}{dx}\left(\dfrac{x}{y}\right) dy = \displaystyle\int y dy \\[5ex] \dfrac{x}{y} = \dfrac{y^2}{2} + C \\[5ex] x = y\left(\dfrac{y^2}{2} + C\right) \\[5ex] x = \dfrac{y^3}{2} + Cy $
(2.)


(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.