I greet you this day,
These are the solutions to Mathematics questions on Inequalities.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided
for some questions.
If you find these resources valuable and helpful in your learning of Mathematics, please consider making
a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive
criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
(1.) At least 5 means ≥ 5
It means that the minimum should be 5
(2.) At most 5 means ≤ 5
It means that the maximum should be 5
(3.) Just 5 means = 5
It means exactly 5 or equal to 5
(4.) More than 5 means > 5
(5.) Less than 5 means < 5
(6.) No more than 5 means ≤ 5
It should not be more than 5
It means 5 or less
(7.) No less than 5 means ≥ 5
It should not be less than 5
It means 5 or more
Rules of Inequalities
c, d, e are real numbers
$
(1.)\text{ If } c \lt d \text{ and } d \lt e, \text{ then } c \lt e ...\text{Transitive Rule} \\[3ex]
(2.)\text{ If } c \gt d \text{ and } d \gt e, \text{ then } c \gt e ...\text{Transitive Rule} \\[3ex]
(3.)\text{ If } c \lt d, \text{ then } d \gt c \\[3ex]
(4.)\text{ If } c \gt d, \text{ then } d \lt c \\[3ex]
(5.)\text{ If } c \lt d, \text{ then } -c \gt -d \\[3ex]
(6.)\text{ If } c \gt d, \text{ then } -c \lt -d \\[3ex]
(7.)\text{ If } c \lt d, \text{ then } \dfrac{1}{c} \gt \dfrac{1}{d} \\[5ex]
(8.)\text{ If } c \gt d, \text{ then } \dfrac{1}{c} \lt \dfrac{1}{d} \\[5ex]
(9.)\text{ If } c \lt d, \text{ then } (c + e) \lt (d + e) \\[3ex]
(10.)\text{ If } c \gt d, \text{ then } (c + e) \gt (d + e) \\[3ex]
(11.)\text{ If } c \lt d, \text{ then } (c - e) \lt (d - e) \\[3ex]
(12.)\text{ If } c \gt d, \text{ then } (c - e) \gt (d - e) \\[3ex]
(13.)\text{ If } c \lt d, \text{ and } e \gt 0; \text{ then } ce \lt de \\[3ex]
(14.)\text{ If } c \lt d, \text{ and } e \lt 0; \text{ then } ce \gt de \\[3ex]
(15.)\text{ If } c \gt d, \text{ and } e \gt 0; \text{ then } ce \gt de \\[3ex]
(16.)\text{ If } c \gt d, \text{ and } e \lt 0; \text{ then } ce \lt de \\[3ex]
(17.)\text{ If } c \lt d, \text{ and } e \gt 0; \text{ then } \dfrac{c}{e} \lt \dfrac{d}{e} \\[5ex]
(18.)\text{ If } c \gt d, \text{ and } e \gt 0; \text{ then } \dfrac{c}{e} \gt \dfrac{d}{e} \\[5ex]
(19.)\text{ If } c \lt d, \text{ and } e \lt 0; \text{ then } \dfrac{c}{e} \gt \dfrac{d}{e} \\[5ex]
(20.)\text{ If } c \gt d, \text{ and } e \lt 0; \text{ then } \dfrac{c}{e} \lt \dfrac{d}{e}
$
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.