Please Read Me.

Inequalities

Welcome to Our Site


I greet you this day,

These are the solutions to Mathematics questions on Inequalities.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
If you find these resources valuable and helpful in your learning of Mathematics, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Notes and Rules

(1.) At least 5 means ≥ 5
It means that the minimum should be 5

(2.) At most 5 means ≤ 5
It means that the maximum should be 5

(3.) Just 5 means = 5
It means exactly 5 or equal to 5

(4.) More than 5 means > 5

(5.) Less than 5 means < 5

(6.) No more than 5 means ≤ 5
It should not be more than 5
It means 5 or less

(7.) No less than 5 means ≥ 5
It should not be less than 5
It means 5 or more

Rules of Inequalities
c, d, e are real numbers

$ (1.)\text{ If } c \lt d \text{ and } d \lt e, \text{ then } c \lt e ...\text{Transitive Rule} \\[3ex] (2.)\text{ If } c \gt d \text{ and } d \gt e, \text{ then } c \gt e ...\text{Transitive Rule} \\[3ex] (3.)\text{ If } c \lt d, \text{ then } d \gt c \\[3ex] (4.)\text{ If } c \gt d, \text{ then } d \lt c \\[3ex] (5.)\text{ If } c \lt d, \text{ then } -c \gt -d \\[3ex] (6.)\text{ If } c \gt d, \text{ then } -c \lt -d \\[3ex] (7.)\text{ If } c \lt d, \text{ then } \dfrac{1}{c} \gt \dfrac{1}{d} \\[5ex] (8.)\text{ If } c \gt d, \text{ then } \dfrac{1}{c} \lt \dfrac{1}{d} \\[5ex] (9.)\text{ If } c \lt d, \text{ then } (c + e) \lt (d + e) \\[3ex] (10.)\text{ If } c \gt d, \text{ then } (c + e) \gt (d + e) \\[3ex] (11.)\text{ If } c \lt d, \text{ then } (c - e) \lt (d - e) \\[3ex] (12.)\text{ If } c \gt d, \text{ then } (c - e) \gt (d - e) \\[3ex] (13.)\text{ If } c \lt d, \text{ and } e \gt 0; \text{ then } ce \lt de \\[3ex] (14.)\text{ If } c \lt d, \text{ and } e \lt 0; \text{ then } ce \gt de \\[3ex] (15.)\text{ If } c \gt d, \text{ and } e \gt 0; \text{ then } ce \gt de \\[3ex] (16.)\text{ If } c \gt d, \text{ and } e \lt 0; \text{ then } ce \lt de \\[3ex] (17.)\text{ If } c \lt d, \text{ and } e \gt 0; \text{ then } \dfrac{c}{e} \lt \dfrac{d}{e} \\[5ex] (18.)\text{ If } c \gt d, \text{ and } e \gt 0; \text{ then } \dfrac{c}{e} \gt \dfrac{d}{e} \\[5ex] (19.)\text{ If } c \lt d, \text{ and } e \lt 0; \text{ then } \dfrac{c}{e} \gt \dfrac{d}{e} \\[5ex] (20.)\text{ If } c \gt d, \text{ and } e \lt 0; \text{ then } \dfrac{c}{e} \lt \dfrac{d}{e} $

(1.) Solve the inequality: $(2a + 3)(a + 1) \le 0$
Write the solution in set notation and interval notation.
Graph the solution.
Check the solution.


$ (2a + 3)(a + 1) \le 0 \\[3ex] \text{Assume }(2a + 3)(a + 1) = 0 \\[3ex] 2a + 3 = 0 \hspace{2em}OR\hspace{2em} a + 1 = 0 \\[3ex] 2a = -3 \hspace{3em}OR\hspace{3em} a = -1 \\[3ex] a = -\dfrac{3}{2} \hspace{3em}OR\hspace{3em} a = -1 \\[5ex] $ Number line to determine test intervals:
Number1-1st

$ \text{Test Intervals are:} \\[3ex] a \lt -\dfrac{3}{2} \\[5ex] -\dfrac{3}{2} \lt a \lt -1 \\[5ex] a \gt -1 \\[3ex] $

Let:
$ a \lt -\dfrac{3}{2} \\[5ex] a = -2 $ $ -\dfrac{3}{2} \lt a \lt -1 \\[5ex] a = -\dfrac{7}{5} $ $ a \gt -1 \\[3ex] a = 0 $
$2a + 3$ + +
$a + 1$ +
$(2a + 3)(a + 1)$ + +

Less than or equal to zero: ≤ 0 means nonpositive

$ \text{Set Notation: } \left\{-\dfrac{3}{2} \le a \le -1\right\} \\[5ex] \text{Interval Notation: } \left[-\dfrac{3}{2}, -1\right] \\[5ex] $ Number1-2nd

Check
$\left[-\dfrac{3}{2}, -1\right]$
LHS RHS
$ (2a + 3)(a + 1) \\[3ex] a = -\dfrac{7}{5} \\[5ex] \left[2\left(-\dfrac{7}{5}\right) + 3\right]\left(-\dfrac{7}{5} + 1\right) \\[5ex] \left(-\dfrac{14}{5} + \dfrac{15}{5}\right)\left(-\dfrac{7}{5} + \dfrac{5}{5}\right) \\[5ex] \left(\dfrac{1}{5}\right)\left(-\dfrac{2}{5}\right) \\[5ex] -\dfrac{2}{25} $ 0
$-\dfrac{2}{25} \le 0$
(2.)

(3.)

(4.)

(5.)

(6.)

(7.)

(8.)

(9.)


(10.)

(11.)

(12.)


(13.)

(14.)

(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)

(22.)


(23.)

(24.)


(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.