Please Read Me.

Linear Algebra

Welcome to Our Site


I greet you this day,

These are the solutions to Mathematics questions on topics in Linear Algebra.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and helpful in your learning, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Linear Transformation to Matrix

For a linear transformation $T:(x, y) \rightarrow (ax + by, cx + dy)$,

the corresponding matrix is: $ T = \begin{bmatrix} a & b \\[3ex] c & d \end{bmatrix} $


2 by 2 Matrix

Let:

$ A = \begin{bmatrix} a_{11} & a_{12} \\[3ex] a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \color{red}{a} & \color{darkblue}{b} \\[3ex] \color{darkblue}{c} & \color{red}{d} \end{bmatrix} \\[10ex] (1.)\;\; minor\:\: A = \begin{bmatrix} d & c \\[3ex] b & a \end{bmatrix} \\[10ex] \text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex] \begin{vmatrix} + & - \\[3ex] - & + \end{vmatrix} \\[10ex] (2.)\;\; cofactor\:\: A = \begin{bmatrix} d & -c \\[3ex] -b & a \end{bmatrix} \\[10ex] (3.)\;\; adj\:\: A = \begin{bmatrix} d & -b \\[3ex] -c & a \end{bmatrix} \\[10ex] (4.)\;\; det\;A = ad - cb \\[3ex] (5.)\;\; A^{-1} = \dfrac{adj\;A}{det\;A} $


3 by 3 Matrix

Let:

$ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\[3ex] a_{21} & a_{22} & a_{23} \\[3ex] a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a & b & c \\[3ex] d & e & f \\[3ex] g & h & i \end{bmatrix} \\[15ex] (1.)\;\; minor\:\: A = \begin{bmatrix} ei - hf & di - gf & dh - ge \\[3ex] bi - hc & ai - gc & ah - gb \\[3ex] bf - ec & af - dc & ae - db \end{bmatrix} \\[15ex] \text{The signs to remember cofactors when determining the determinant of a matrix is}: \\[3ex] \begin{vmatrix} + & - & + \\[3ex] - & + & - \\[3ex] + & - & + \end{vmatrix} \\[10ex] (2.)\;\; cofactor\:\: A = \begin{bmatrix} ei - hf & gf - di & dh - ge \\[3ex] hc - bi & ai - gc & gb - ah \\[3ex] bf - ec & dc - af & ae - db \end{bmatrix} \\[15ex] (3.)\;\; adj\: A = \begin{bmatrix} ei - hf & hc - bi & bf - ec \\[3ex] gf - di & ai - gc & dc - af \\[3ex] dh - ge & gb - ah & ae - db \end{bmatrix} \\[15ex] (4.)\;\; det\: A = aei + bgf + cdh - ahf - bdi - cge \\[3ex] (5.)\;\; A^{-1} = \dfrac{adj\;A}{det\;A} $

(1.) (a.) Use the inverse method to solve

$ 2x_1 - 3x_2 + 2x_3 = 9 \\[3ex] 3x_1 + 2x_2 - x_3 = 4 \\[3ex] x_1 - 4x_2 + 2x_3 = 6 \\[3ex] $ (b.) Solve for x

$ \begin{vmatrix} x + 1 & -5 & -6 \\[3ex] -1 & x & 2 \\[3ex] -3 & 2 & x + 1 \end{vmatrix} \\[10ex] $

The question is asking us to use the Inverse Matrix Method to solve the linear system

$ (a.) \\[3ex] X = A^{-1}B \\[3ex] where \\[3ex] X = \begin{bmatrix} x_1 \\[3ex] x_2 \\[3ex] x_3 \end{bmatrix} \hspace{3em} A = \begin{bmatrix} 2 & -3 & 2 \\[3ex] 3 & 2 & -1 \\[3ex] 1 & -4 & 2 \end{bmatrix} \hspace{3em} B = \begin{bmatrix} 9 \\[3ex] 4 \\[3ex] 6 \end{bmatrix} $

Let us find the inverse of Matrix A
We shall use the Row Reduction Method but you may use the Formula Method if you prefer it.

$ \underline{\text{Row Reduction Method}} \\[3ex] A \ \ | \ \ I = I \ \ | \ \ A^{-1} \\[3ex] \left[ \begin{array}{ccc|ccc} 2 & -3 & 2 & 1 & 0 & 0 \\[3ex] 3 & 2 & -1 & 0 & 1 & 0 \\[3ex] 1 & -4 & 2 & 0 & 0 & 1 \end{array} \right] \begin{matrix} \underrightarrow{-3R_1 + 2R_2} \\ \underrightarrow{-R_1 + 2R_3} \end{matrix} \left[ \begin{array}{ccc|ccc} 2 & -3 & 2 & 1 & 0 & 0 \\[3ex] 0 & 13 & -8 & -3 & 2 & 0 \\[3ex] 0 & -5 & 2 & -1 & 0 & 2 \end{array} \right] \\[10ex] \begin{matrix} \underrightarrow{3R_2 + 13R_1} \\ \underrightarrow{5R_2 + 13R_3} \end{matrix} \left[ \begin{array}{ccc|ccc} 26 & 0 & 2 & 4 & 6 & 0 \\[3ex] 0 & 13 & -8 & -3 & 2 & 0 \\[3ex] 0 & 0 & -14 & -28 & 10 & 26 \end{array} \right] \\[10ex] \begin{matrix} \underrightarrow{R_3 + 7R_1} \\ \underrightarrow{-4R_3 + 7R_2} \end{matrix} \left[ \begin{array}{ccc|ccc} 182 & 0 & 0 & 0 & 52 & 26 \\[3ex] 0 & 91 & 0 & 91 & -26 & -104 \\[3ex] 0 & 0 & -14 & -28 & 10 & 26 \end{array} \right] \\[10ex] \begin{matrix} \underrightarrow{\dfrac{R_1}{182}} \\ \underrightarrow{\dfrac{R_2}{91}} \\ \underrightarrow{-\dfrac{R_3}{14}} \end{matrix} \left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & \dfrac{2}{7} & \dfrac{1}{7} \\[5ex] 0 & 1 & 0 & 1 & -\dfrac{2}{7} & -\dfrac{8}{7} \\[5ex] 0 & 0 & 1 & 2 & -\dfrac{5}{7} & -\dfrac{13}{7} \end{array} \right] \\[10ex] \implies \\[3ex] A^{-1} = \begin{bmatrix} 0 & \dfrac{2}{7} & \dfrac{1}{7} \\[5ex] 1 & -\dfrac{2}{7} & -\dfrac{8}{7} \\[5ex] 2 & -\dfrac{5}{7} & -\dfrac{13}{7} \end{bmatrix} $

$ A^{-1} * B \\[3ex] = \begin{bmatrix} 0 & \dfrac{2}{7} & \dfrac{1}{7} \\[5ex] 1 & -\dfrac{2}{7} & -\dfrac{8}{7} \\[5ex] 2 & -\dfrac{5}{7} & -\dfrac{13}{7} \end{bmatrix} \begin{bmatrix} 9 \\[3ex] 4 \\[3ex] 6 \end{bmatrix} \\[16ex] = \begin{bmatrix} 0 * 9 + \dfrac{2}{7} * 4 + \dfrac{1}{7} * 6 \\[5ex] 1 * 9 + -\dfrac{2}{7} * 4 + -\dfrac{8}{7} * 6 \\[5ex] 2 * 9 + -\dfrac{5}{7} * 4 + -\dfrac{13}{7} * 6 \end{bmatrix} \\[16ex] = \begin{bmatrix} 0 + \dfrac{8}{7} + \dfrac{6}{7} \\[5ex] \dfrac{63}{7} - \dfrac{8}{7} - \dfrac{48}{7} \\[5ex] \dfrac{126}{7} - \dfrac{20}{7} - \dfrac{78}{7} \end{bmatrix} \\[16ex] = \begin{bmatrix} \dfrac{14}{7} \\[5ex] \dfrac{7}{7} \\[5ex] \dfrac{28}{7} \end{bmatrix} \\[16ex] = \begin{bmatrix} 2 \\[3ex] 1 \\[3ex] 4 \end{bmatrix} $

$ \begin{bmatrix} x_1 \\[3ex] x_2 \\[3ex] x_3 \end{bmatrix} = \begin{bmatrix} 2 \\[3ex] 1 \\[3ex] 4 \end{bmatrix} \\[10ex] \implies \\[3ex] x_1 = 2 \\[3ex] x_2 = 1 \\[3ex] x_3 = 4 $

Check
$x_1 = 2,\;\;\;x_2 = 1,\;\;\;x_3 = 4$
LHS RHS
$ 2x_1 - 3x_2 + 2x_3 \\[3ex] 2(2) - 3(1) + 2(4) \\[3ex] 4 - 3 + 8 \\[3ex] 9 $ 9
$ 3x_1 + 2x_2 - x_3 \\[3ex] 3(2) + 2(1) - 4 \\[3ex] 6 + 2 - 4 \\[3ex] 4 $ 4
$ x_1 - 4x_2 + 2x_3 \\[3ex] 2 - 4(1) + 2(4) \\[3ex] 2 - 4 + 8 \\[3ex] 6 $ 6

$ (b.) \\[3ex] \underline{\text{Denominator}} \\[3ex] \begin{vmatrix} + & - & + \\[3ex] - & + & - \\[3ex] + & - & + \end{vmatrix} \hspace{3em} \begin{vmatrix} x + 1 & -5 & -6 \\[3ex] -1 & x & 2 \\[3ex] -3 & 2 & x + 1 \end{vmatrix} = 0 \\[12ex] \underline{\text{1st Row}} \\[3ex] (x + 1)\begin{vmatrix} x & 2 \\[3ex] 2 & x + 1 \end{vmatrix} - -5\begin{vmatrix} -1 & 2 \\[3ex] -3 & x + 1 \end{vmatrix} + -6\begin{vmatrix} -1 & x \\[3ex] -3 & 2 \end{vmatrix} = 0 \\[7ex] (x + 1)[x(x + 1) - 4] + 5[-1(x + 1) + 6] - 6(-2 + 3x) = 0 \\[3ex] (x + 1)(x^2 + x - 4) + 5(-x - 1 + 6) + 12 - 18x = 0 \\[3ex] x^3 + x^2 - 4x + x^2 + x - 4 + 5(-x + 5) + 12 - 18x = 0 \\[3ex] x^3 + 2x^2 - 3x - 4 - 5x + 25 + 12 - 18x = 0 \\[3ex] x^3 + 2x^2 - 26x + 33 = 0 \\[3ex] \underline{\text{Rational Zeros Theorem}} \\[3ex] \text{Leading Coefficient} = 1 \\[3ex] \text{Factors of Leading Coefficient} = \pm 1 \\[3ex] \text{Constant Term} = 33 \\[3ex] \text{Factors of Constant Term} = \pm 1, \pm 3, \pm 11, \pm 33 \\[3ex] \text{Possible Rational Zeros} = \dfrac{\text{Factors of Constant Term}}{\text{Factors of Leading Coefficient}} \\[5ex] = \pm 1, \pm 3, \pm 11, \pm 33 \\[3ex] \text{Try } x = 3 \\[3ex] 3^3 + 2(3)^2 - 26(3) + 33 = 0 \\[3ex] x = 3 \;\;\text{is a solution} \\[3ex] \text{Let us find the remaining two solutions} \\[5ex] \underline{\text{Synthetic Division: By Addition}} \\[3ex] \begin{array}{c|cccc} 3 & 1 & 2 & -26 & 33 \\ + & & 3 & 15 & -33 \\ \hline & 1 & 5 & -11 & 0 \\ \end{array} \\[10ex] Quotient = x^2 + 5x - 11 \\[5ex] \underline{\text{Completing the Square Method}} \\[3ex] \text{coefficient of }x = 5 \\[3ex] \text{half of it} = \dfrac{1}{2} * 5 = \dfrac{5}{2} \\[5ex] \text{square the result} = \left(\dfrac{5}{2}\right)^2 \\[5ex] x^2 + 5x + \left(\dfrac{5}{2}\right)^2 = 11 + \left(\dfrac{5}{2}\right)^2 \\[5ex] \left(x + \dfrac{5}{2}\right)^2 = 11 + \dfrac{25}{4} \\[5ex] \left(x + \dfrac{5}{2}\right)^2 = \dfrac{44}{4} + \dfrac{25}{4} \\[5ex] \left(x + \dfrac{5}{2}\right)^2 = \dfrac{69}{4} \\[5ex] x + \dfrac{5}{2} = \pm \sqrt{\dfrac{69}{4}} = \pm \dfrac{\sqrt{69}}{2} \\[5ex] x = -\dfrac{5}{2} \pm \dfrac{\sqrt{69}}{2} \\[5ex] x = \dfrac{-5 \pm \sqrt{69}}{2} $

(a.)
Calculator 1a

Calculator 1b

Calculator 1c

(b.)
Calculator 1d

Calculator 1e

Calculator 1f

Calculator 1g

Calculator 1h

Calculator 1i
(2.)


(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)


(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


(23.)


(24.)


(25.)


(26.)


(27.)


(28.)


(29.)


(30.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.