I greet you this day,
These are the solutions to Mathematics questions on Mathematical Logic.
The TI-84 Plus CE shall be used for applicable questions.
If you find these resources valuable/helpful, please consider making a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive
criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
Validity and Invality of Symbolic Arguments
To determine whether an argument is valid or invalid:
(1.) Identify and write the different statements.
(2.) Write the premises and the conclusion in symbolic logic.
The statements must be written in the positive sense only.
(3.) Use any or a combination of these 4 methods to determine the validity or invalidity of the
argument.
(I.) Valid Forms of Arguments and Invalid Forms of Arguments.
Compare with the Valid Forms of Arguments and Invalid Forms of Arguments. See the two tables below.
If the argument is not similar to any of the forms, try any of the remaining 2 methods.
(II.) Definition
This applies to one or more premises and a conclusion.
(a.) Draw the truth table of the premises and the conclusion.
(b.) Check all the cases where "all" the premises are true.
(i.) If there is no case where "all" the premises are true, the argument is valid.
(ii.) If there is any case where "all" the premises are true AND the conclusion is true in "all" those
cases, the argument is valid.
(iii.) If there is any case where "all" the premises are true AND the conclusion is false, the argument
is invalid.
(III.) Formula
For one premise:
Draw a truth table for the formula: $premise\: 1 \rightarrow conclusion$
For two premises:
Draw a truth table for the formula: $[(premise\: 1) \land (premise\: 2)] \rightarrow conclusion$
For three premises:
Draw a truth table for the formula: $[(premise\: 1) \land (premise\: 2) \land (premise\: 3)] \rightarrow
conclusion$
For four premises:
Draw a truth table for the formula: $[(premise\: 1) \land (premise\: 2) \land (premise\: 3) \land
(premise\: 4)] \rightarrow conclusion$
(i) If the formula is a tautology, the argument is valid
(ii) If the formula is not a tautology, the argument is invalid.
In other words; if the formula is a contingency or a contradiction, the argument is invalid.
(IV.) Deduction
p, q, r,... are logical statements
True = truth value of T
False = truth value of F
$
(1.) \text{ Identity Laws} \\[3ex]
p \land T \equiv p \\[3ex]
p \lor F \equiv p \\[5ex]
(2.) \text{ Domination Laws} \\[3ex]
p \lor T \equiv T \\[3ex]
p \land F \equiv F \\[5ex]
(3.) \text{ Idempotent Laws} \\[3ex]
p \lor p \equiv p \\[3ex]
p \land p \equiv p \\[5ex]
(4.) \text{ Negation Laws (Complement Laws or Laws of Complementation)} \\[3ex]
p \lor \neg p \equiv T \\[3ex]
p \land \neg p \equiv F \\[5ex]
(5.) \text{ Double Negation Laws} \\[3ex]
\neg(\neg p) \equiv p \\[5ex]
(6.) \text{ Commutative Laws} \\[3ex]
p \lor q \equiv q \lor p \\[3ex]
p \land q \equiv q \land p \\[5ex]
(7.) \text{ Associative Laws} \\[3ex]
(p \lor q) \lor r \equiv p \lor (q \lor r) \\[3ex]
(p \land q) \land r \equiv p \land (q \land r) \\[5ex]
(8.) \text{ Distributive Laws} \\[3ex]
p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \\[3ex]
p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \\[5ex]
(9.) \text{ De Morgan's Laws} \\[3ex]
\neg(p \land q) \equiv \neg p \lor \neg q \\[3ex]
\neg(p \lor q) \equiv \neg p \land \neg q \\[5ex]
(10.) \text{ Absorption Laws} \\[3ex]
p \lor (p \land q) \equiv p \\[3ex]
p \land (p \lor q) \equiv p \\[5ex]
(11.) \text{ Conditional (Implication) Equivalence} \\[3ex]
p \rightarrow q \equiv \neg p \lor q \\[3ex]
p \rightarrow q \equiv \neg q \rightarrow \neg p...\text{contrapositive statement} \\[5ex]
(12.) \text{Biconditional Equivalence} \\[3ex]
p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \\[3ex]
p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)
$
Valid Argument | Name |
---|---|
$ p \rightarrow q \\[2ex] p \\ \rule{0.9in}{0.3pt} \\ \therefore q $ |
Modus Ponens or Law of Detachment or Direct Reasoning or Affirming the Hypothesis |
$ {p \rightarrow q \\[2ex] \hspace{1.5em} \neg q \\ \rule{0.9in}{0.3pt} \\ \therefore \neg p} \hspace{-1mm} {p \rightarrow \neg q \\[2ex] \hspace{2.3em} q \\ \rule{0.9in}{0.3pt} \\ \therefore \neg p} $ |
Modus Tollens or Law of Contraposition or Contrapositive Reasoning or Denying the Conclusion |
$ p \rightarrow q \\[2ex] q \rightarrow r \\ \rule{0.9in}{0.3pt} \\ \therefore p \rightarrow r $ |
Law of Hypothetical Syllogism or Transitive Reasoning |
$ {p \lor q \\[2ex] \hspace{1.3em} \neg q \\ \rule{0.9in}{0.3pt} \\ \therefore p} \hspace{-1mm} {p \lor q \\[2ex] \neg p \\ \rule{0.9in}{0.3pt} \\ \therefore q} $ |
Law of Disjunctive Syllogism or Disjunctive Reasoning |
$ p \lor q \\[2ex] \neg p \lor r \\ \rule{0.9in}{0.3pt} \\ \therefore q \lor r $ | Resolution |
$ p \\ \rule{1in}{0.5pt} \\ \therefore p \lor q $ | Addition |
$ {p \land q \\ \rule{1in}{0.5pt} \\ \therefore p} \hspace{-1mm} {p \land q \\ \rule{1in}{0.5pt} \\ \therefore q} $ | Simplification |
$
p \\[2ex]
q \\
\rule{0.9in}{0.3pt} \\
\therefore p \land q
$
|
Conjunction |
$ (p \rightarrow q) \land (r \rightarrow s) \\ \rule{2.5in}{0.5pt} \\ \therefore (p \lor r) \rightarrow (q \lor s) \\[5ex] (p \rightarrow q) \land (r \rightarrow s) \\ \rule{2.5in}{0.5pt} \\ \therefore (p \land r) \rightarrow (q \land s) \\[5ex] (p \rightarrow q) \land (r \rightarrow s) \\[2ex] p \lor r \\ \rule{2.5in}{0.5pt} \\ \therefore q \land s $ | Constructive Dilemmas |
$ (p \rightarrow q) \land (r \rightarrow s) \\[2ex] \neg q \lor \neg s \\ \rule{2.5in}{0.5pt} \\ \therefore \neg p \lor \neg r $ | Destructive Dilemmas |
Invalid Argument | Name |
---|---|
$ p \rightarrow q \\[2ex] \hspace{1.6em} q \\ \rule{0.9in}{0.3pt} \\ \therefore p $ |
Fallacy of the Converse or Affirming the Conclusion |
$ p \rightarrow q \\[2ex] \neg p \\ \rule{0.9in}{0.3pt} \\ \therefore \neg q $ |
Fallacy of the Inverse or Denying the Hypothesis |
$ p \rightarrow q \\[2ex] q \rightarrow r \\ \rule{0.9in}{0.3pt} \\ \therefore r \rightarrow p $ | Misuse of Transitive Reasoning |
$ {p \lor q \\[2ex] p \\ \rule{0.9in}{0.3pt} \\ \therefore \neg q} \hspace{-10mm} {p \lor q \\[2ex] \hspace{1.5em} q \\ \rule{0.9in}{0.3pt} \\ \therefore \neg p} \hspace{-14mm} {p \lor \neg q \\[2ex] p \\ \rule{0.9in}{0.3pt} \\ \therefore q} \hspace{-3mm} $ | Misuse of Disjunctive Reasoning |
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.