Please Read Me.

Mensuration

Welcome to Our Site


I greet you this day,
These are the solutions to Mathematics questions on Mensuration.
If you find these resources valuable/helpful, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas

Right Triangle

$ perpendicular\:\:height = height \\[3ex] Area = \dfrac{1}{2} * base * height \\[5ex] height = \dfrac{2 * Area}{base} \\[5ex] base = \dfrac{2 * Area}{height} \\[5ex] hypotenuse^2 = height^2 + base^2...Pythagorean\:\:Theorem \\[3ex] hypotenuse = \sqrt{height^2 + base^2} \\[3ex] height = \sqrt{hypotenuse^2 - base^2} \\[3ex] base = \sqrt{hypotenuse^2 - height^2} \\[3ex] Perimeter = hypotenuse + height + base \\[3ex] Area = \dfrac{1}{2} * height * base * \sin (hypotenuseAngle) \\[5ex] Area = \dfrac{1}{2} * height * hypotenuse * \sin (baseAngle) \\[5ex] Area = \dfrac{1}{2} * base * hypotenuse * \sin (heightAngle) \\[5ex] Semiperimeter = \dfrac{height + base + hypotenuse}{2} \\[5ex] Semiperimeter - height = firstdifference \\[3ex] Semiperimeter - base = seconddifference \\[3ex] Semiperimeter - hypotenuse = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] hypotenuse = {Perimeter^2 - 4 * Area}{2 * Perimeter} \\[5ex] base = \dfrac{(Perimeter - hypotenuse) \pm Math.sqrt((hypotenuse - Perimeter)^2 - 8 * Area)}{2} \\[5ex] height = \dfrac{2 * Area}{base} $


Triangle

$ Perimeter = firstside + secondside + thirdside \\[5ex] Area = \dfrac{1}{2} * firstside * secondside * \sin (thirdAngle) \\[5ex] Area = \dfrac{1}{2} * firstside * thirdside * \sin (secondAngle) \\[5ex] Area = \dfrac{1}{2} * secondside * thirdside * \sin (firstAngle) \\[5ex] Semiperimeter = \dfrac{firstside + secondside + thirdside}{2} \\[5ex] Semiperimeter - firstside = firstdifference \\[3ex] Semiperimeter - secondside = seconddifference \\[3ex] Semiperimeter - thirdside = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] \underline{Cosine\:\:Law} \\[3ex] firstside^2 = secondside^2 + thirdside^2 - 2 * secondside * thirdside * \cos (firstAngle) \\[3ex] secondside^2 = firstside^2 + thirdside^2 - 2 * firstside * thirdside * \cos (secondAngle) \\[3ex] thirdside^2 = firstside^2 + secondside^2 - 2 * firstside * secondside * \cos (thirdAngle) \\[5ex] firstAngle = \cos^{-1} \left(\dfrac{secondside^2 + thirdside^2 - firstside^2}{2 * secondside * thirdside}\right) \\[5ex] secondAngle = \cos^{-1} \left(\dfrac{firstside^2 + thirdside^2 - secondside^2}{2 * firstside * thirdside}\right) \\[5ex] thirdAngle = \cos^{-1} \left(\dfrac{firstside^2 + secondside^2 - thirdside^2}{2 * firstside * secondside}\right) \\[7ex] \underline{\text{Area of a Triangle given the vertices}} \\[3ex] \text{Let the vertices be:} \\[3ex] Vertex\;1:\;\;(x_1, y_1) \\[4ex] Vertex\;2:\;\;(x_2, y_2) \\[4ex] Vertex\;3:\;\;(x_3, y_3) \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| $


Insribed Triangle (Circumscribed Circle)

$ Circumradius = \dfrac{firstside \cdot secondside \cdot thirdside}{4 \cdot Area} $


Square

$ side = length = width = height \\[3ex] Area = side^2 \\[3ex] side = \sqrt{Area} \\[3ex] Perimeter = 4 * side \\[3ex] side = \dfrac{Perimeter}{4} \\[5ex] diagonal = side * \sqrt{2} \\[3ex] side = \dfrac{diagonal * \sqrt{2}}{2} \\[5ex] Area = \dfrac{Perimeter^2}{16} \\[5ex] Perimeter = 4 * \sqrt{Area} \\[3ex] Area = \dfrac{diagonal^2}{2} \\[5ex] diagonal = \sqrt{2 * Area} \\[3ex] Perimeter = 2 * diagonal * \sqrt{2} \\[3ex] diagonal = \dfrac{Perimeter * \sqrt{2}}{4} $


Rectangle

$ Area = length * width \\[3ex] length = \dfrac{Area}{width} \\[5ex] width = \dfrac{Area}{length} \\[5ex] Area = \dfrac{(length * Perimeter) - (2 * length^2)}{2} \\[5ex] Area = \dfrac{(width * Perimeter) - (2 * width^2)}{2} \\[5ex] Perimeter = 2(length + width) \\[3ex] length = \dfrac{Perimeter - 2 * width}{2} \\[5ex] width = \dfrac{Perimeter - 2 * length}{2} \\[5ex] Perimeter = \dfrac{2(length^2 + Area)}{length} \\[5ex] Perimeter = \dfrac{2(width^2 + Area)}{width} \\[5ex] diagonal = \sqrt{length^2 + width^2} \\[4ex] length = \sqrt{diagonal^2 - width^2} \\[4ex] width = \sqrt{diagonal^2 - length^2} \\[4ex] diagonal = \dfrac{\sqrt{length^4 + Area^2}}{length} \\[5ex] diagonal = \dfrac{\sqrt{width^4 + Area^2}}{width} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * length^2) - (4 * Perimeter * length)}}{2} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * width^2) - (4 * Perimeter * width)}}{2} $


Circle

$ Area = A \\[3ex] Circumference = C \\[3ex] Radius = r \\[3ex] Diameter = d \\[3ex] d = 2r \\[3ex] r = \dfrac{d}{2} \\[5ex] A = \pi r^2 \\[3ex] A = \dfrac{\pi d^2}{4} \\[5ex] C = 2\pi r \\[3ex] C = \pi d \\[3ex] r = \dfrac{\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{2\pi} \\[5ex] d = \dfrac{2\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{\pi} \\[5ex] A = \dfrac{C^2}{4\pi} \\[5ex] C = 2\sqrt{A\pi} $


Cube

6 square faces
12 edges

$ edge = side = length = width = height \\[3ex] Surface\:\:Area = 6 * edge^2 \\[3ex] edge = \sqrt{\dfrac{Surface\:\:Area}{6}} \\[5ex] Volume = edge^3 \\[3ex] edge = \sqrt[3]{Volume} \\[3ex] Volume = \dfrac{edge * Surface\:\: Area}{6} \\[5ex] edge = \dfrac{6 * Volume}{Surface\:\:Area} \\[5ex] Surface\:\:Area = \dfrac{6 * Volume}{edge} \\[5ex] Volume = \dfrac{Surface\:\:Area * \sqrt{6 * Surface\:\:Area}}{36} \\[5ex] edge = \dfrac{diagonal * \sqrt{3}}{3} \\[5ex] diagonal = \sqrt{3} * edge \\[3ex] Surface\:\:Area = 2 * diagonal^2 \\[3ex] diagonal = \dfrac{\sqrt{2 * Surface\:\:Area}}{2} \\[5ex] Volume = \dfrac{diagonal^3 * \sqrt{3}}{9} \\[5ex] diagonal = \sqrt{3} * \sqrt[3]{Volume} $


Cuboid (Right Rectangular Prism)

$ Volume = Length \cdot Width \cdot Height \\[3ex] $


Right Cone

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cone = \dfrac{1}{3} * Volume\:\:of\:\:Cylinder \\[5ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] Slant Height = l \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] l = \sqrt{h^2 + r^2} \\[3ex] l = \dfrac{\sqrt{4h^2 + d^2}}{2} \\[5ex] h = \sqrt{l^2 - r^2} \\[3ex] h = \dfrac{\sqrt{4l^2 - d^2}}{2} \\[5ex] r = \sqrt{l^2 - h^2} \\[3ex] d = 2 * \sqrt{l^2 - h^2} \\[3ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{BA * \pi}}{\pi} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{BA * \pi}}{\pi} \\[5ex] LSA = \pi rl \\[3ex] LSA = \dfrac{\pi dl}{2} \\[5ex] l = \dfrac{LSA}{\pi r} \\[5ex] LSA = \pi r\sqrt{h^2 + r^2} \\[3ex] h = \dfrac{\sqrt{LSA^2 - \pi^2 r^4}}{\pi r} \\[5ex] TSA = BA + LSA \\[3ex] TSA = \pi r(r + l) \\[3ex] l = \dfrac{TSA - \pi r^2}{\pi r} \\[5ex] TSA = \dfrac{\pi d(d + 2l)}{4} \\[5ex] l = \dfrac{4 * TSA - \pi d^2}{2\pi d} \\[5ex] r = \dfrac{-\pi l \pm \sqrt{\pi^2 l^2 + 4\pi * TSA}}{2\pi} \\[5ex] TSA = \pi r(r + \sqrt{h^2 + r^2}) \\[3ex] h = \dfrac{\sqrt{TSA(TSA - 2\pi r^2)}}{\pi r} \\[5ex] V = \dfrac{BA * h}{3} \\[5ex] V = \dfrac{\pi r^2h}{3} \\[5ex] V = \dfrac{\pi hd^2}{12} \\[5ex] V = \dfrac{\pi h(l^2 - h^2)}{3} \\[5ex] h = \dfrac{3V}{\pi r^2} \\[5ex] r = \dfrac{\sqrt{3V\pi h}}{\pi h} $


Right Cylinder

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cylinder = 3 * Volume\:\:of\:\:Cone \\[3ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] LSA = 2\pi rh \\[3ex] r = \dfrac{LSA}{2\pi h} \\[5ex] h = \dfrac{LSA}{2\pi r} \\[5ex] LSA = \pi dh \\[3ex] h = \dfrac{LSA}{\pi d} \\[5ex] d = \dfrac{LSA}{\pi h} \\[5ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{\pi BA}}{\pi} \\[5ex] r = \dfrac{1}{\pi} * \sqrt{\dfrac{\pi(TSA - 2 * LSA)}{2}} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{\pi BA}}{\pi} \\[5ex] d = \dfrac{\sqrt{2\pi (TSA - LSA)}}{\pi} \\[5ex] TSA = 2\pi r(r + h) \\[3ex] h = \dfrac{TSA - 2\pi r^2}{2\pi r} \\[5ex] r = \dfrac{-\pi h \pm \sqrt{\pi(\pi h^2 + 2 * TSA)}}{2\pi} \\[5ex] TSA = 2BA + LSA \\[3ex] BA = \dfrac{TSA - LSA}{2} \\[5ex] LSA = TSA - 2BA \\[3ex] TSA = \pi d\left(\dfrac{d + 2h}{2}\right) \\[5ex] h = \dfrac{2 * TSA - \pi d^2}{2\pi d} \\[5ex] d = \dfrac{-\pi h \pm \sqrt{\pi(h^2 + 2 * TSA)}}{\pi} \\[5ex] h = \dfrac{LSA * \sqrt{\pi * BA}}{\pi * BA} \\[5ex] h = \dfrac{LSA}{\sqrt{2\pi(TSA - LSA)}} \\[5ex] BA = \dfrac{LSA^2}{\pi h^2} \\[5ex] BA = \dfrac{(4 * TSA + \pi h^2) \pm h\sqrt{\pi(\pi h^2 - 8 * TSA)}}{8} \\[5ex] LSA = h\sqrt{BA * \pi} \\[3ex] LSA = \dfrac{-\pi h^2 \pm h\sqrt{\pi(\pi h^2 + 8 * TSA)}}{4} \\[5ex] TSA = 2 * BA \pm h\sqrt{\pi * BA} \\[3ex] TSA = \dfrac{LSA(2 * LSA + \pi h^2)}{\pi h^2} \\[5ex] V = \pi r^2h \\[3ex] r = \dfrac{2V}{LSA} \\[5ex] d = \dfrac{4V}{LSA} \\[5ex] r = \dfrac{\sqrt{Vh\pi}}{h\pi} \\[5ex] V = BA * h \\[3ex] BA = \dfrac{V}{h} \\[5ex] h = \dfrac{V}{BA} \\[5ex] h = \dfrac{V}{\pi r^2} \\[5ex] h = \dfrac{4V}{\pi d^2} \\[5ex] V = \dfrac{\pi d^2h}{4} \\[5ex] d = \dfrac{\sqrt{Vh\pi}}2{h\pi} \\[5ex] V = \dfrac{LSA^2}{h\pi} \\[5ex] LSA = \sqrt{Vh\pi} \\[3ex] h = \dfrac{LSA^2}{4V\pi} \\[5ex] V = \dfrac{(h^3\pi + 4 * TSA * h) \pm h^2\sqrt{\pi(h^2\pi + 8 * TSA)}}{8} \\[5ex] TSA = \dfrac{2V + h\sqrt{Vh\pi}}{h} \\[5ex] TSA = \dfrac{2V + 2\pi rh^2}{h} \\[5ex] r = \dfrac{TSA * h - 2V}{2\pi h^2} \\[5ex] d = \dfrac{TSA * h - 2V}{\pi h^2} \\[5ex] h = \dfrac{TSA \pm \sqrt{TSA^2 - 16\pi rV}}{4\pi r} $


Trapezoid

Trapezoid's Midpoint Segment Theorem states that the line segment connecting the nonparallel sides of a trapezoid is parallel to the bases, and it's length is the average of the lengths of the bases.

$ Midline = \dfrac{short\;\;base + long\;base}{2} $

(1.) Calculate the surface area of the three-dimensional figure

Number 1


The three-dimensional figure is a triangular prism.
Let the perpendicular height of the right-triangle = h
Let us indicate points on it.

Number 1

$ \text{Let us find the perpendicular height of the right traingle} \\[3ex] \text{Right Triangle ACB or Right Triangle FDE} \\[3ex] leg = base = 24.3\;cm \\[3ex] leg = \perp height = h \\[3ex] hypotenuse = 40.5\;cm \\[3ex] h^2 + 24.3^2 = 40.5^2 ...\text{Pythagorean Theorem} \\[3ex] h^2 = 40.5^2 - 24.3^2 \\[3ex] h = \sqrt{40.5^2 - 24.3^2} \\[3ex] h = 32.4\;cm \\[5ex] \underline{\text{2 Right Triangles: Right Triangle ACB and Right Triangle FDE}} \\[3ex] Area = 2 * \dfrac{1}{2} * base * height \\[5ex] Area = 24.3 * 32.4 \\[3ex] Area = 787.32\;cm^2 \\[5ex] \text{Area of a Rectangle} = Length * Width \\[3ex] \underline{\text{Rectangle AFEB}} \\[3ex] Length = 34.3\;cm \\[3ex] Width = 24.3\;cm \\[3ex] Area = 34.3 * 24.3 \\[3ex] Area = 833.49\;cm^2 \\[5ex] \underline{\text{Rectangle ACDF}} \\[3ex] Length = 34.3\;cm \\[3ex] Width = 32.4\;cm \\[3ex] Area = 34.3 * 32.4 \\[3ex] Area = 1111.32\;cm^2 \\[5ex] \underline{\text{Rectangle BCDE}} \\[3ex] Length = 34.3\;cm \\[3ex] Width = 40.5\;cm \\[3ex] Area = 34.3 * 40.5 \\[3ex] Area = 1389.15\;cm^2 \\[5ex] \underline{\text{3-D Figure: Triangular Prism}} \\[3ex] \text{Area = Area of the 2 Right Triangles + Area of the 3 Rectangles} \\[3ex] Area = 787.32 + 833.49 + 1111.32 + 1389.15 \\[3ex] Area = 4121.28\;cm^2 $
(2.) Calculate the approximate volume of the pyramid.
Round the answer to the nearest hundredth.

Number 2


The pyramid is a right triangular pyramid.
Let us indicate points on it.

Number 2

$ \text{Volume of a Pyramid} = \dfrac{1}{3} * \text{Base Area} * \perp Height \\[5ex] \perp Height = 19.3\;cm \\[3ex] \text{The base is a right triangle} \\[5ex] \underline{\text{Base: Right Triangle ADC}} \\[3ex] base = 16.3\;cm \\[3ex] \perp height = 10.4\;cm \\[3ex] Area = \dfrac{1}{2} * base * \perp height \\[5ex] Area = \dfrac{1}{2} * 16.3 * 10.4 \\[5ex] Area = 84.76 \\[3ex] \text{Base Area} = 84.76\;cm^2 \\[5ex] \underline{\text{Right Triangular Pyramid}} \\[3ex] Volume = \dfrac{1}{3} * 84.76 * 19.3 \\[5ex] Volume = 545.2893333 \\[3ex] Volume \approx 545.29\;cm^3...\text{to the nearest hundredth} $
(3.)


(4.)

(5.)

(6.)

(7.)


(8.)


(9.)

(10.)


(11.)

(12.)


(13.)

(14.)


(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)


(22.)


(23.)

(24.)


(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


(31.)

(32.)


(33.)

(34.)


(35.)

(36.)


(37.)

(38.)


(39.)

(40.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.