I greet you this day,
These are the solutions to Mathematics questions on Mensuration.
If you find these resources valuable/helpful, please consider making a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
$ perpendicular\:\:height = height \\[3ex] Area = \dfrac{1}{2} * base * height \\[5ex] height = \dfrac{2 * Area}{base} \\[5ex] base = \dfrac{2 * Area}{height} \\[5ex] hypotenuse^2 = height^2 + base^2...Pythagorean\:\:Theorem \\[3ex] hypotenuse = \sqrt{height^2 + base^2} \\[3ex] height = \sqrt{hypotenuse^2 - base^2} \\[3ex] base = \sqrt{hypotenuse^2 - height^2} \\[3ex] Perimeter = hypotenuse + height + base \\[3ex] Area = \dfrac{1}{2} * height * base * \sin (hypotenuseAngle) \\[5ex] Area = \dfrac{1}{2} * height * hypotenuse * \sin (baseAngle) \\[5ex] Area = \dfrac{1}{2} * base * hypotenuse * \sin (heightAngle) \\[5ex] Semiperimeter = \dfrac{height + base + hypotenuse}{2} \\[5ex] Semiperimeter - height = firstdifference \\[3ex] Semiperimeter - base = seconddifference \\[3ex] Semiperimeter - hypotenuse = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] hypotenuse = {Perimeter^2 - 4 * Area}{2 * Perimeter} \\[5ex] base = \dfrac{(Perimeter - hypotenuse) \pm Math.sqrt((hypotenuse - Perimeter)^2 - 8 * Area)}{2} \\[5ex] height = \dfrac{2 * Area}{base} $
$ Perimeter = firstside + secondside + thirdside \\[5ex] Area = \dfrac{1}{2} * firstside * secondside * \sin (thirdAngle) \\[5ex] Area = \dfrac{1}{2} * firstside * thirdside * \sin (secondAngle) \\[5ex] Area = \dfrac{1}{2} * secondside * thirdside * \sin (firstAngle) \\[5ex] Semiperimeter = \dfrac{firstside + secondside + thirdside}{2} \\[5ex] Semiperimeter - firstside = firstdifference \\[3ex] Semiperimeter - secondside = seconddifference \\[3ex] Semiperimeter - thirdside = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] \underline{Cosine\:\:Law} \\[3ex] firstside^2 = secondside^2 + thirdside^2 - 2 * secondside * thirdside * \cos (firstAngle) \\[3ex] secondside^2 = firstside^2 + thirdside^2 - 2 * firstside * thirdside * \cos (secondAngle) \\[3ex] thirdside^2 = firstside^2 + secondside^2 - 2 * firstside * secondside * \cos (thirdAngle) \\[5ex] firstAngle = \cos^{-1} \left(\dfrac{secondside^2 + thirdside^2 - firstside^2}{2 * secondside * thirdside}\right) \\[5ex] secondAngle = \cos^{-1} \left(\dfrac{firstside^2 + thirdside^2 - secondside^2}{2 * firstside * thirdside}\right) \\[5ex] thirdAngle = \cos^{-1} \left(\dfrac{firstside^2 + secondside^2 - thirdside^2}{2 * firstside * secondside}\right) \\[7ex] \underline{\text{Area of a Triangle given the vertices}} \\[3ex] \text{Let the vertices be:} \\[3ex] Vertex\;1:\;\;(x_1, y_1) \\[4ex] Vertex\;2:\;\;(x_2, y_2) \\[4ex] Vertex\;3:\;\;(x_3, y_3) \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| $
$ Circumradius = \dfrac{firstside \cdot secondside \cdot thirdside}{4 \cdot Area} $
$ side = length = width = height \\[3ex] Area = side^2 \\[3ex] side = \sqrt{Area} \\[3ex] Perimeter = 4 * side \\[3ex] side = \dfrac{Perimeter}{4} \\[5ex] diagonal = side * \sqrt{2} \\[3ex] side = \dfrac{diagonal * \sqrt{2}}{2} \\[5ex] Area = \dfrac{Perimeter^2}{16} \\[5ex] Perimeter = 4 * \sqrt{Area} \\[3ex] Area = \dfrac{diagonal^2}{2} \\[5ex] diagonal = \sqrt{2 * Area} \\[3ex] Perimeter = 2 * diagonal * \sqrt{2} \\[3ex] diagonal = \dfrac{Perimeter * \sqrt{2}}{4} $
$ Area = length * width \\[3ex] length = \dfrac{Area}{width} \\[5ex] width = \dfrac{Area}{length} \\[5ex] Area = \dfrac{(length * Perimeter) - (2 * length^2)}{2} \\[5ex] Area = \dfrac{(width * Perimeter) - (2 * width^2)}{2} \\[5ex] Perimeter = 2(length + width) \\[3ex] length = \dfrac{Perimeter - 2 * width}{2} \\[5ex] width = \dfrac{Perimeter - 2 * length}{2} \\[5ex] Perimeter = \dfrac{2(length^2 + Area)}{length} \\[5ex] Perimeter = \dfrac{2(width^2 + Area)}{width} \\[5ex] diagonal = \sqrt{length^2 + width^2} \\[4ex] length = \sqrt{diagonal^2 - width^2} \\[4ex] width = \sqrt{diagonal^2 - length^2} \\[4ex] diagonal = \dfrac{\sqrt{length^4 + Area^2}}{length} \\[5ex] diagonal = \dfrac{\sqrt{width^4 + Area^2}}{width} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * length^2) - (4 * Perimeter * length)}}{2} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * width^2) - (4 * Perimeter * width)}}{2} $
$ Area = A \\[3ex] Circumference = C \\[3ex] Radius = r \\[3ex] Diameter = d \\[3ex] d = 2r \\[3ex] r = \dfrac{d}{2} \\[5ex] A = \pi r^2 \\[3ex] A = \dfrac{\pi d^2}{4} \\[5ex] C = 2\pi r \\[3ex] C = \pi d \\[3ex] r = \dfrac{\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{2\pi} \\[5ex] d = \dfrac{2\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{\pi} \\[5ex] A = \dfrac{C^2}{4\pi} \\[5ex] C = 2\sqrt{A\pi} $
6 square faces
12 edges
$
edge = side = length = width = height \\[3ex]
Surface\:\:Area = 6 * edge^2 \\[3ex]
edge = \sqrt{\dfrac{Surface\:\:Area}{6}} \\[5ex]
Volume = edge^3 \\[3ex]
edge = \sqrt[3]{Volume} \\[3ex]
Volume = \dfrac{edge * Surface\:\: Area}{6} \\[5ex]
edge = \dfrac{6 * Volume}{Surface\:\:Area} \\[5ex]
Surface\:\:Area = \dfrac{6 * Volume}{edge} \\[5ex]
Volume = \dfrac{Surface\:\:Area * \sqrt{6 * Surface\:\:Area}}{36} \\[5ex]
edge = \dfrac{diagonal * \sqrt{3}}{3} \\[5ex]
diagonal = \sqrt{3} * edge \\[3ex]
Surface\:\:Area = 2 * diagonal^2 \\[3ex]
diagonal = \dfrac{\sqrt{2 * Surface\:\:Area}}{2} \\[5ex]
Volume = \dfrac{diagonal^3 * \sqrt{3}}{9} \\[5ex]
diagonal = \sqrt{3} * \sqrt[3]{Volume}
$
$ Volume = Length \cdot Width \cdot Height \\[3ex] $
Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height
$
Volume\:\:of\:\:Cone = \dfrac{1}{3} * Volume\:\:of\:\:Cylinder \\[5ex]
Lateral\:\:Surface\:\:Area = LSA \\[3ex]
Base\:\:Area = BA \\[3ex]
Total\:\:Surface\:\:Area = TSA \\[3ex]
Volume = V \\[3ex]
Diameter = d \\[3ex]
Radius = r \\[3ex]
Height = h \\[3ex]
Slant Height = l \\[3ex]
r = \dfrac{d}{2} \\[5ex]
d = 2r \\[3ex]
l = \sqrt{h^2 + r^2} \\[3ex]
l = \dfrac{\sqrt{4h^2 + d^2}}{2} \\[5ex]
h = \sqrt{l^2 - r^2} \\[3ex]
h = \dfrac{\sqrt{4l^2 - d^2}}{2} \\[5ex]
r = \sqrt{l^2 - h^2} \\[3ex]
d = 2 * \sqrt{l^2 - h^2} \\[3ex]
BA = \pi r^2 \\[3ex]
r = \dfrac{\sqrt{BA * \pi}}{\pi} \\[5ex]
BA = \dfrac{\pi d^2}{4} \\[5ex]
d = \dfrac{2\sqrt{BA * \pi}}{\pi} \\[5ex]
LSA = \pi rl \\[3ex]
LSA = \dfrac{\pi dl}{2} \\[5ex]
l = \dfrac{LSA}{\pi r} \\[5ex]
LSA = \pi r\sqrt{h^2 + r^2} \\[3ex]
h = \dfrac{\sqrt{LSA^2 - \pi^2 r^4}}{\pi r} \\[5ex]
TSA = BA + LSA \\[3ex]
TSA = \pi r(r + l) \\[3ex]
l = \dfrac{TSA - \pi r^2}{\pi r} \\[5ex]
TSA = \dfrac{\pi d(d + 2l)}{4} \\[5ex]
l = \dfrac{4 * TSA - \pi d^2}{2\pi d} \\[5ex]
r = \dfrac{-\pi l \pm \sqrt{\pi^2 l^2 + 4\pi * TSA}}{2\pi} \\[5ex]
TSA = \pi r(r + \sqrt{h^2 + r^2}) \\[3ex]
h = \dfrac{\sqrt{TSA(TSA - 2\pi r^2)}}{\pi r} \\[5ex]
V = \dfrac{BA * h}{3} \\[5ex]
V = \dfrac{\pi r^2h}{3} \\[5ex]
V = \dfrac{\pi hd^2}{12} \\[5ex]
V = \dfrac{\pi h(l^2 - h^2)}{3} \\[5ex]
h = \dfrac{3V}{\pi r^2} \\[5ex]
r = \dfrac{\sqrt{3V\pi h}}{\pi h}
$
Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height
$
Volume\:\:of\:\:Cylinder = 3 * Volume\:\:of\:\:Cone \\[3ex]
Lateral\:\:Surface\:\:Area = LSA \\[3ex]
Base\:\:Area = BA \\[3ex]
Total\:\:Surface\:\:Area = TSA \\[3ex]
Volume = V \\[3ex]
Diameter = d \\[3ex]
Radius = r \\[3ex]
Height = h \\[3ex]
r = \dfrac{d}{2} \\[5ex]
d = 2r \\[3ex]
LSA = 2\pi rh \\[3ex]
r = \dfrac{LSA}{2\pi h} \\[5ex]
h = \dfrac{LSA}{2\pi r} \\[5ex]
LSA = \pi dh \\[3ex]
h = \dfrac{LSA}{\pi d} \\[5ex]
d = \dfrac{LSA}{\pi h} \\[5ex]
BA = \pi r^2 \\[3ex]
r = \dfrac{\sqrt{\pi BA}}{\pi} \\[5ex]
r = \dfrac{1}{\pi} * \sqrt{\dfrac{\pi(TSA - 2 * LSA)}{2}} \\[5ex]
BA = \dfrac{\pi d^2}{4} \\[5ex]
d = \dfrac{2\sqrt{\pi BA}}{\pi} \\[5ex]
d = \dfrac{\sqrt{2\pi (TSA - LSA)}}{\pi} \\[5ex]
TSA = 2\pi r(r + h) \\[3ex]
h = \dfrac{TSA - 2\pi r^2}{2\pi r} \\[5ex]
r = \dfrac{-\pi h \pm \sqrt{\pi(\pi h^2 + 2 * TSA)}}{2\pi} \\[5ex]
TSA = 2BA + LSA \\[3ex]
BA = \dfrac{TSA - LSA}{2} \\[5ex]
LSA = TSA - 2BA \\[3ex]
TSA = \pi d\left(\dfrac{d + 2h}{2}\right) \\[5ex]
h = \dfrac{2 * TSA - \pi d^2}{2\pi d} \\[5ex]
d = \dfrac{-\pi h \pm \sqrt{\pi(h^2 + 2 * TSA)}}{\pi} \\[5ex]
h = \dfrac{LSA * \sqrt{\pi * BA}}{\pi * BA} \\[5ex]
h = \dfrac{LSA}{\sqrt{2\pi(TSA - LSA)}} \\[5ex]
BA = \dfrac{LSA^2}{\pi h^2} \\[5ex]
BA = \dfrac{(4 * TSA + \pi h^2) \pm h\sqrt{\pi(\pi h^2 - 8 * TSA)}}{8} \\[5ex]
LSA = h\sqrt{BA * \pi} \\[3ex]
LSA = \dfrac{-\pi h^2 \pm h\sqrt{\pi(\pi h^2 + 8 * TSA)}}{4} \\[5ex]
TSA = 2 * BA \pm h\sqrt{\pi * BA} \\[3ex]
TSA = \dfrac{LSA(2 * LSA + \pi h^2)}{\pi h^2} \\[5ex]
V = \pi r^2h \\[3ex]
r = \dfrac{2V}{LSA} \\[5ex]
d = \dfrac{4V}{LSA} \\[5ex]
r = \dfrac{\sqrt{Vh\pi}}{h\pi} \\[5ex]
V = BA * h \\[3ex]
BA = \dfrac{V}{h} \\[5ex]
h = \dfrac{V}{BA} \\[5ex]
h = \dfrac{V}{\pi r^2} \\[5ex]
h = \dfrac{4V}{\pi d^2} \\[5ex]
V = \dfrac{\pi d^2h}{4} \\[5ex]
d = \dfrac{\sqrt{Vh\pi}}2{h\pi} \\[5ex]
V = \dfrac{LSA^2}{h\pi} \\[5ex]
LSA = \sqrt{Vh\pi} \\[3ex]
h = \dfrac{LSA^2}{4V\pi} \\[5ex]
V = \dfrac{(h^3\pi + 4 * TSA * h) \pm h^2\sqrt{\pi(h^2\pi + 8 * TSA)}}{8} \\[5ex]
TSA = \dfrac{2V + h\sqrt{Vh\pi}}{h} \\[5ex]
TSA = \dfrac{2V + 2\pi rh^2}{h} \\[5ex]
r = \dfrac{TSA * h - 2V}{2\pi h^2} \\[5ex]
d = \dfrac{TSA * h - 2V}{\pi h^2} \\[5ex]
h = \dfrac{TSA \pm \sqrt{TSA^2 - 16\pi rV}}{4\pi r}
$
Trapezoid's Midpoint Segment Theorem states that the line segment connecting the nonparallel sides of a
trapezoid is parallel to the bases, and it's length is the average of the lengths of the bases.
$
Midline = \dfrac{short\;\;base + long\;base}{2}
$
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.