Please Read Me.

Number Theory

Welcome to Our Site


I greet you this day,
These are the solutions to Mathematics questions on Number Theory.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
If you find these resources valuable/helpful, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas and Statements

(1.) The sum of the first n natural numbers: $\sum\limits_{k = 0}^{n} 1 + 2 + 3 + 4 + 5 + ... + n = \dfrac{n(n + 1)}{2}$

(2.) The sum of the first n squares $\sum\limits_{k = 0}^{n} 1^2 + 2^2 + 3^2 + ... + n^2 = \dfrac{n(n + 1)(2n + 1)}{6}$

(1.) Show that the sum of the first n squares $\sum\limits_{k = 0}^{n} 1^2 + 2^2 + 3^2 + ... + n^2 = \dfrac{n(n + 1)(2n + 1)}{6} \\[5ex]$ Use at least three different approaches/methods.


1st Approach: Method of Undetermined Coefficients.
This is based on these statements:
(1.) If the terms of a sequence is of degree n, then the sum of the series is of degree n + 1
Hence, the sum of the series of squares results in a cubic polynomial.

(2.) The difference between the sum of the terms of a series and the sum of the terms of the series less one term is the square of the terms of the series.
For example, the difference between the sum of n terms, say $S_n$ and the sum of $n - 1$ terms, say $S_{n - 1}$ is $n^2$

$ \underline{\text{Method of Undetermined Coefficients}} \\[3ex] \text{For } 1^2 + 2^2 + 3^2 + ... + n^2 \\[3ex] S_n = An^3 + Bn^2 + Cn + D...eqn.(1) \\[3ex] \text{where }A, B, C, D \text{ are coefficients} \\[3ex] S_{n - 1} = A(n - 1)^3 + B(n - 1)^2 + C(n - 1) + D \\[3ex] $ I want to use Pascal's Triangle for the expansion.
Use whatever approach you prefer. $$ \begin{array}{c} 1 \\[2ex] 1 \quad 1 \\[2ex] 1 \quad 2 \quad 1 \\[2ex] 1 \quad 3 \quad 3 \quad 1 \\[2ex] \end{array} $$ $ (n - 1)^3 \\[3ex] = n^3 + 3n^2(-1) + 3n(-1)^2 + (-1)^3 \\[3ex] = n^3 - 3n^2 + 3n - 1 \\[5ex] A(n - 1)^3 \\[3ex] = A(n^3 - 3n^2 + 3n - 1) \\[3ex] = An^3 - 3An^2 + 3An - A \\[5ex] (n - 1)^2 \\[3ex] = n^2 - 2n + 1 \\[5ex] B(n - 1)^2 \\[3ex] = B(n^2 - 2n + 1) \\[3ex] = Bn^2 - 2Bn + B \\[5ex] \implies \\[3ex] S_{n - 1} = An^3 - 3An^2 + 3An - A + Bn^2 - 2Bn + B + Cn - C + D \\[2ex] S_{n - 1} = An^3 + n^2(-3A + B) + n(3A - 2B + C) - A + B - C + D ...eqn.(2) \\[5ex] S_n - S_{n - 1} = n^2 \\[3ex] \underline{\text{LHS}} \\[3ex] eqn.(1) - eqn.(1) \implies S_n - S_{n - 1} \implies \\[3ex] An^3 - An^3 + n^2[B - (-3A + B)] + n[C - (3A - 2B + C)] + D - (-A + B - C + D) \\[3ex] n^2(B + 3A - B) + n(C - 3A + 2B - C) + D + A - B + C - D \\[3ex] n^2(3A) + n(-3A + 2B) + A - B + C \\[3ex] \underline{\text{RHS}} \\[3ex] n^2 \\[3ex] n^2 + 0n + 0 \\[3ex] \underline{\text{LHS = RHS}} \\[3ex] \text{Equate coefficients; find the unknown coefficients} \\[3ex] 3A = 1 \\[3ex] A = \dfrac{1}{3} \\[5ex] -3A + 2B = 0 \\[3ex] 2B = 3A \\[3ex] 2B = 3 * \dfrac{1}{3} \\[5ex] 2B = 1 \\[3ex] B = \dfrac{1}{2} \\[5ex] A - B + C = 0 \\[3ex] C = B - A \\[3ex] C = \dfrac{1}{2} - \dfrac{1}{3} \\[5ex] C = \dfrac{3 - 2}{6} \\[5ex] C = \dfrac{1}{6} \\[5ex] \text{We need to find } D \\[3ex] S_n = 1^2 + 2^2 + 3^2 + ... + n^2...\text{Given} \\[3ex] \text{From } eqn.(1) \\[3ex] S_n = An^3 + Bn^2 + Cn + D \\[3ex] \text{when } n = 1 \\[3ex] S_1 = 1^2 = 1 \\[3ex] \text{Also}: \\[3ex] S_1 = \dfrac{1}{3} * 1^3 + \dfrac{1}{2} * 1^2 + \dfrac{1}{6} * 1 + D \\[5ex] \implies \\[3ex] \dfrac{1}{3} + \dfrac{1}{2} + \dfrac{1}{6} + D = 1 \\[5ex] D = 1 - \dfrac{1}{3} - \dfrac{1}{2} - \dfrac{1}{6} \\[5ex] D = \dfrac{6 - 2 - 3 - 1}{6} \\[5ex] D = \dfrac{0}{6} \\[5ex] D = 0 \\[3ex] \implies \\[3ex] S_n = \dfrac{1}{3}n^3 + \dfrac{1}{2}n^2 + \dfrac{1}{6}n \\[5ex] S_n = \dfrac{n^3}{3} + \dfrac{n^2}{2} + \dfrac{n}{6} \\[5ex] = \dfrac{2n^3 + 3n^2 + n}{6} \\[5ex] = \dfrac{n(2n^2 + 3n + 1)}{6} \\[5ex] ................................................. \\[3ex] 2n^2 + 3n + 1 \\[3ex] 2n^2 + 2n + n + 1 \\[3ex] 2n(n + 1) + 1(n + 1) \\[3ex] (n + 1)(2n + 1) \\[3ex] ................................................. \\[3ex] \therefore S_n = \dfrac{n(n + 1)(2n + 1)}{6} \\[5ex] $ 2nd Approach: Proof by Mathematical Induction.
Steps LHS RHS
$1^2 + 2^2 + 3^2 + ... + n^2$ $\dfrac{n(n + 1)(2n + 1)}{6}$
Initial Step
Test for $n = 1$
First term:
$1^2 = 1$
$ \dfrac{1(1 + 1)[2(1) + 1]}{6} \\[5ex] \dfrac{1(2)(3)}{6} \\[5ex] 1 $
The initial step works
Optional Testing
Test for $n = 2$
First term + Second term:
$ 1^2 + 2^2 \\[3ex] 1 + 4 \\[3ex] 5 $
$ \dfrac{2(2 + 1)[2(2) + 1]}{6} \\[5ex] \dfrac{2(3)(5)}{6} \\[5ex] 5 $
Optional Testing
Test for $n = 3$
First term + Second term + Third term:
$ 1^2 + 2^2 + 3^2 \\[3ex] 1 + 4 + 9 \\[3ex] 14 $
$ \dfrac{2(3 + 1)[2(3) + 1]}{6} \\[5ex] \dfrac{3(4)(7)}{6} \\[5ex] 14 $
The optional testing works
Induction Hypothesis
Assume $n = k$
This is the $kth$ term
$1^2 + 2^2 + 3^2 + ... + k^2 = \dfrac{k(k + 1)(2k + 1)}{6}...eqn.(1)$
Induction Step
Assume $n = k + 1$
This is the $(k + 1)st$ term
$ 1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = \dfrac{(k + 1)[(k + 1) + 1][2(k + 1) + 1]}{6} \\[5ex] 1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = \dfrac{(k + 1)(k + 1 + 1)(2k + 2 + 1)}{6} \\[5ex] 1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = \dfrac{(k + 1)(k + 2)(2k + 3)}{6}...eqn.(2) $
Induction Step $ \color{black}{1^2 + 2^2 + 3^2 + ... + k^2} + (k + 1)^2 \\[3ex] \text{From } \color{black}{eqn. (1)}, \text{substitute} \\[3ex] \color{black}{\dfrac{k(k + 1)(2k + 1)}{6}} + (k + 1)(k + 1) \\[5ex] \dfrac{(k^2 + k)(2k + 1)}{6} + k^2 + k + k + 1 \\[5ex] \dfrac{2k^3 + k^2 + 2k^2 + k}{6} + k^2 + 2k + 1 \\[5ex] \dfrac{2k^3 + 3k^2 + k}{6} + \dfrac{k^2 + 2k + 1}{1} \\[5ex] \dfrac{1(2k^3 + 3k^2 + k) + 6(k^2 + 2k + 1)}{6} \\[5ex] \dfrac{2k^3 + 3k^2 + k + 6k^2 + 12k + 6}{6} \\[5ex] \dfrac{2k^3 + 9k^2 + 13k + 6}{6} \\[5ex] ............................................... \\[3ex] \underline{\text{Numerator}} \\[3ex] f(k) = 2k^3 + 9k^2 + 13k + 6 \\[3ex] \text{Try } k = -1 \\[3ex] f(-1) = 2(-1)^3 + 9(-1)^2 + 13(-1) + 6 \\[3ex] = 2(-1) + 9(1) - 13 + 6 \\[3ex] = -2 + 9 - 13 + 6 \\[3ex] = 0 \\[3ex] \implies \\[3ex] k = -1 \text{ is a zero} \\[3ex] (k + 1) \text{ is a factor} \\[3ex] \text{To find the remaining factors, let us use Synthetic Division} \\[3ex] \underline{\text{Synthetic Division}} \\[3ex] \begin{array}{r|rrrr} -1 & 2 & 9 & 13 & 6 \\ + & & -2 & -7 & -6 \\ \hline & 2 & 7 & 6 & 0 \\ \end{array} \\[7ex] \text{Quotient} = 2k^2 + 7k + 6 \\[3ex] \implies \\[3ex] 2k^3 + 9k^2 + 13k + 6 = (k + 1)(k + 2)(2k + 3) \\[3ex] ............................................... \\[3ex] \dfrac{(k + 1)(k + 2)(2k + 3)}{6} $ $ \dfrac{(k + 1)(k + 2)(2k + 3)}{6} $
$LHS = RHS$
The formula is proved.

3rd Approach: Difference of Cubes leading to Telescoping Sum.
Assume the term: $(p + 1)^3$
Let us use the Pascal's Triangle to expand it. You may expand it using your preferred approach. $$ \begin{array}{c} 1 \\[2ex] 1 \quad 1 \\[2ex] 1 \quad 2 \quad 1 \\[2ex] 1 \quad 3 \quad 3 \quad 1 \\[2ex] \end{array} $$ $ (p + 1)^3 \\[3ex] = p^3 + 3p^2(1) + 3p(1)^2 + 1^3 \\[3ex] = p^3 + 3p^2 + 3p + 1 \\[5ex] (p + 1)^3 - p^3 = 3p^2 + 3p + 1 \\[3ex] $
$(p + 1)^3 - p^3 = 3p^2 + 3p + 1$
For LHS RHS
$p = 1$ $ (1 + 1)^3 - 1^3 \\[3ex] 2^3 - 1^3 $ $ 3(1)^2 + 3(1) + 1 $
$p = 2$ $ (2 + 1)^3 - 2^3 \\[3ex] 3^3 - 2^3 $ $ 3(2)^2 + 3(2) + 1 $
$p = 3$ $ (3 + 1)^3 - 3^3 \\[3ex] 4^3 - 3^3 $ $ 3(3)^2 + 3(3) + 1 $
$p = n$ $ (n + 1)^3 - n^3 $ $ 3(n)^2 + 3(n) + 1 $
Sum, S $ (2^3 - 1^3) + (3^3 - 2^3) + (4^3 - 3^3) + ... + [(n + 1)^3 - n^3] \\[3ex] \text{This is now a telescoping sum.} \\[3ex] 2^3 - 1^3 + 3^3 - 2^3 + 4^3 - 3^3 + ... + (n + 1)^3 - n^3 \\[3ex] (n + 1)^3 - 1^3 \\[3ex] n^3 + 3n^2 + 3n + 1 - 1 \\[3ex] n^3 + 3n^2 + 3n $ $ [3(1)^2 + 3(1) + 1] \\[3ex] + [3(2)^2 + 3(2) + 1] \\[3ex] + [3(3)^2 + 3(3) + 1] \\[3ex] + ... + [3(n)^2 + 3(n) + 1] \\[5ex] 3[1^2 + 2^2 + 3^2 + ... + n^2] \\[3ex] + 3[1 + 2 + 3 + ... + n] \\[3ex] + 1 + 1 + 1 + ... + 1 \\[5ex] ................................. \\[3ex] 1^2 + 2^2 + 3^2 + ... + n^2 = S_{n^2} \\[3ex] 1 + 2 + 3 + ... + n = S_n \\[3ex] S_n = \dfrac{n(n + 1)}{2} ...\text{Sum of the first n natural numbers} \\[5ex] 1 + 1 + 1 + ... + 1 = n ...\text{The sum of 1 repeated n times is n} \\[3ex] ................................. \\[3ex] 3S_{n^2} + 3S_n + n \\[3ex] 3S_{n^2} + 3\left[\dfrac{n(n + 1)}{2}\right] + n \\[5ex] 3S_{n^2} + \dfrac{3n(n + 1)}{2} + n $
$ \text{LHS = RHS} \\[3ex] n^3 + 3n^2 + 3n = 3S_{n^2} + \dfrac{3n(n + 1)}{2} + n \\[5ex] 3S_{n^2} = n^3 + 3n^2 + 3n - \dfrac{3n(n + 1)}{2} - n \\[5ex] 3S_{n^2} = n^3 + 3n^2 + 2n - \dfrac{3n(n + 1)}{2} \\[5ex] LCD = 2 \\[3ex] 6S_{n^2} = 2n^3 + 6n^2 + 4n - 3n(n + 1) \\[3ex] 6S_{n^2} = 2n^3 + 6n^2 + 4n - 3n^2 - 3n \\[3ex] 6S_{n^2} = 2n^3 + 3n^2 + n \\[3ex] 6S_{n^2} = n(2n^2 + 3n + 1) \\[3ex] ........................................ \\[3ex] 2n^2 + 3n + 1 \\[3ex] 2n^2 + 2n + n + 1 \\[3ex] 2n(n + 1) + 1(n + 1) \\[3ex] (n + 1)(2n + 1) \\[3ex] ........................................ \\[3ex] 6S_{n^2} = n(n + 1)(2n + 1) \\[3ex] S_{n^2} = \dfrac{n(n + 1)(2n + 1)}{6} $
(2.) Find the smallest integer $n \gt 1$ so that $\sqrt{\dfrac{1^2 + 2^2 + 3^2 + ... + n^2}{n}}$ is an integer.


$ \dfrac{1^2 + 2^2 + 3^2 + ... + n^2}{n} \\[5ex] = (1^2 + 2^2 + 3^2 + ... + n^2) \div n \\[3ex] ................................................. \\[3ex] \text{Sum of the first n squares} \\[3ex] 1^2 + 2^2 + 3^2 + ... + n^2 = \dfrac{n(n + 1)(2n + 1)}{6} \\[5ex] ................................................. \\[3ex] = \dfrac{n(n + 1)(2n + 1)}{6} * \dfrac{1}{n} \\[5ex] = \dfrac{(n + 1)(2n + 1)}{6} \\[5ex] \implies \\[3ex] \sqrt{\dfrac{(n + 1)(2n + 1)}{6}} \\[5ex] \underline{\text{Testing: Trial and Error Approach}} \\[3ex] n \gt 1 \\[3ex] \text{Test } n = 2 \hspace{3em} \sqrt{\dfrac{(2 + 1)[2(2) + 1]}{6}} = \sqrt{\dfrac{3(5)}{6}} = \sqrt{\dfrac{15}{6}} \text{ is not an integer} \\[5ex] \text{Test } n = 3 \hspace{3em} \sqrt{\dfrac{(3 + 1)[2(3) + 1]}{6}} = \sqrt{\dfrac{4(7)}{6}} = \sqrt{\dfrac{28}{6}} \text{ is not an integer} \\[5ex] \text{Test } n = 4 \hspace{3em} \sqrt{\dfrac{(4 + 1)[2(4) + 1]}{6}} = \sqrt{\dfrac{5(9)}{6}} = \sqrt{\dfrac{45}{6}} \text{ is not an integer} \\[5ex] \text{Test } n = 5 \hspace{3em} \sqrt{\dfrac{(5 + 1)[2(5) + 1]}{6}} = \sqrt{\dfrac{6(11)}{6}} = \sqrt{11} \text{ is not an integer} \\[5ex] $ This is a long task... to keep testing until we find an integer.
We have to find a better approach.

$ \sqrt{\dfrac{(n + 1)(2n + 1)}{6}} = \text{some integer, } p \\[5ex] \dfrac{(n + 1)(2n + 1)}{6} = p^2 \\[5ex] (n + 1)(2n + 1) = 6p^2 \\[3ex] 2n^2 + n + 2n + 1 = 6p^2 \\[3ex] 2n^2 + 3n + 1 - 6p^2 = 0 \\[3ex] 2n^2 + 3n + (1 - 6p^2) = 0 \\[3ex] \text{Compare to the standard form: } an^2 + bn + c = 0 \\[3ex] a = 2 \\[3ex] b = 3 \\[3ex] c = 1 - 6p^2 \\[3ex] \underline{\text{Quadratic Formula}} \\[3ex] n = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\[5ex] \text{Because } n \gt 1 \text{ and } \sqrt{b^2 - 4ac} \text{ must be a positive integer}; \\[3ex] n = \dfrac{-b + \sqrt{b^2 - 4ac}}{2a} \\[5ex] ................................................. \\[3ex] \text{Discriminant} = b^2 - 4ac \\[3ex] = 3^2 - 4(2)(1 - 6p^2) \\[3ex] = 9 - 8(1 - 6p^2) \\[3ex] = 9 - 8 + 48p^2 \\[3ex] = 1 + 48p^2 \\[3ex] ................................................. \\[3ex] $ The discriminant must be a perfect square.
This is because the square root of a perfect square is a positive integer.
In other words, the square root of the discriminant must be a positive integer.

$ \sqrt{1 + 48p^2} = \text{some integer, } k \\[3ex] ................................................. \\[3ex] \implies \\[3ex] n = \dfrac{-3 + \sqrt{1 + 48p^2}}{2(2)} \\[5ex] n = \dfrac{-3 + k}{4} \\[5ex] ................................................. \\[3ex] 1 + 48p^2 = k^2 \\[3ex] k^2 = 1 + 48p^2 \\[3ex] k^2 - 48p^2 = 1 \\[3ex] k^2 - 3 * 16 * p^2 = 1 \\[3ex] k^2 - 3 * 4^2 * p^2 = 1 \\[3ex] k^2 - 3(4p)^2 = 1 \\[3ex] $ This is now a Pell equation (Diophantine equation of the form: $x^2 - dy^2 = 1$ where d is a natural number and d is not a perfect square).
Solving it using this approach is the preferred approach if solving it manually (without using a Computational software).

$ \underline{\text{Pell Equation}} \\[3ex] x^2 - dy^2 = 1 \\[3ex] \text{A pair of positive integers, } (x, y) \text{ solves the Pell equation if} \\[3ex] \text{1st: } \exists d \in \mathbb{N}, \hspace{2em} d \text{ is not a perfect square} \\[3ex] \text{2nd: } \exists e \in \mathbb{N} \hspace{1em}:\hspace{1em} x + y\sqrt{d} = (a + b\sqrt{d})^e \\[3ex] \text{where } (a, b) \text{ is the fundamental solution: solution when }x, y \gt 0 \text{ and are minimal} \\[3ex] \text{So, for } k^2 - 3(4p)^2 = 1 \\[3ex] \text{Let us find the fundamental solution} \\[3ex] \underline{\text{Fundamental Solution}} \\[3ex] \text{When } p = 1 \\[3ex] k^2 = 1 + 3[4(1)]^2 \\[3ex] k = \sqrt{1 + 3(16)} \\[3ex] k = \sqrt{1 + 48} \\[3ex] k = \sqrt{49} \\[3ex] k = 7 \\[3ex] \text{Fundamental solution} = (k. p) = (7, 1) \\[5ex] \underline{\text{General Solutions}} \\[3ex] k + 4p\sqrt{d} = (7 + 4(1)\sqrt{3})^e \\[3ex] k + 4p\sqrt{d} = (7 + 4\sqrt{3})^e \\[3ex] d = 3 ...\text{is already an integer constant} \\[3ex] \text{We shall now focus on finding } n \text{ in cases where } k, p \text{ are integers} \\[3ex] n \text{ must also be an integer} \\[3ex] \text{The first instance of integer, } n \gt 1 \text { will be the answer} \\[3ex] \text{Recall that: } n = \dfrac{-3 + k}{4} \\[5ex] \text{When } e = 1 \\[3ex] (7 + 4\sqrt{3})^1 \\[3ex] = 7 + 4\sqrt{3} \\[3ex] k = 7 \\[3ex] 4p = 4 \\[3ex] p = \dfrac{4}{4} \\[5ex] p = 1 \\[3ex] n = \dfrac{-3 + 7}{4} \\[5ex] n = \dfrac{4}{4} \\[5ex] n = 1 \\[3ex] \text{But } 1 \ngtr 1 \\[5ex] \text{Next} \\[3ex] \text{When } e = 2 \\[3ex] (7 + 4\sqrt{3})^2 \\[3ex] = (7 + 4\sqrt{3})(7 + 4\sqrt{3}) \\[3ex] = 49 + 28\sqrt{3} + 28\sqrt{3} + 48 \\[3ex] = 97 + 56\sqrt{3} \\[3ex] k = 97 \\[3ex] 4p = 56 \\[3ex] p = \dfrac{56}{4} \\[5ex] p = 14 \\[3ex] n = \dfrac{-3 + 97}{4} \\[5ex] n = \dfrac{94}{4} ...\text{not an integer} \\[5ex] \text{Next} \\[3ex] \text{When } e = 3 \\[3ex] (7 + 4\sqrt{3})^3 \\[3ex] = (97 + 56\sqrt{3})(7 + 4\sqrt{3}) \\[3ex] = 679 + 388\sqrt{3} + 392\sqrt{3} + 672 \\[3ex] = 1351 + 780\sqrt{3} \\[3ex] k = 1351 \\[3ex] 4p = 780 \\[3ex] p = \dfrac{780}{4} \\[5ex] p = 195 \\[3ex] n = \dfrac{-3 + 1351}{4} \\[5ex] n = \dfrac{1348}{4} \\[5ex] n = 337 \\[3ex] 337 \gt 1 \\[3ex] \therefore n = 337 $
(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.) Suppose that X and Y are angles with $\tan X = \dfrac{1}{m}$ and $\tan Y = \dfrac{a}{n}$ for some positive integers a, m, and n.
Determine the number of positive integers $a \le 50$ for which there are exactly 6 pairs of positive integers (m, n) with $X + Y = 45^\circ$.

$ \underline{\text{Hint:}} \tan (\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}...\text{Sum and Difference Formulas} \\[5ex] $

$ \text{Let us solve for }a \\[3ex] \tan (X + Y) = \dfrac{\tan X + \tan Y}{1 - \tan X \tan Y}...\text{Sum Formulas} \\[5ex] X + Y = 45^\circ \\[3ex] \tan X = \dfrac{1}{m} \\[5ex] \tan Y = \dfrac{a}{n} \\[5ex] \tan 45^\circ = \left(\dfrac{1}{m} + \dfrac{a}{n}\right) \div \left[1 - \left(\dfrac{1}{m}\right) * \left(\dfrac{a}{n}\right)\right] \\[5ex] 1 = \left(\dfrac{n + am}{mn}\right) \div \left(1 - \dfrac{a}{mn}\right) \\[5ex] 1 = \left(\dfrac{n + am}{mn}\right) \div \left(\dfrac{mn - a}{mn}\right) \\[5ex] 1 = \left(\dfrac{n + am}{mn}\right) * \left(\dfrac{mn}{mn - a}\right) \\[5ex] 1 = \dfrac{n + am}{mn - a} \\[5ex] n + am = mn - a \\[3ex] am + a = mn - n \\[3ex] a(m + 1) = n(m - 1) \\[3ex] a = \dfrac{n(m - 1)}{m + 1} ...eqn.(1) \\[5ex] \implies \\[3ex] \dfrac{n(m - 1)}{m + 1} \le 50 \\[5ex] $ Solving this inequality: two variables in one inequality is time-consuming...we do not know the value of either m or n
Even though we know that a, m, and n are positive integers, the guesses will take time.
So, let's see whether we can find a theorem that works in Number Theory to help us solve the question.

$ \text{From:} \\[3ex] n + am = mn - a \\[3ex] a = mn - am - n \\[3ex] a = m(n - a) - n \\[3ex] \text{To enable us to get a product of factors: add a to both sides} \\[3ex] a + a = m(n - a) - n + a \\[3ex] 2a = m(n - a) - 1(n - a) \\[3ex] 2a = (n - a)(m - 1) \\[3ex] $ To be continued.
(11.)

(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.