I greet you this day,
These are the solutions to Mathematics questions on Number Theory.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided
for some questions.
If you find these resources valuable/helpful, please consider making a donation:
Cash App: $ExamsSuccess or
cash.app/ExamsSuccess
PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess
Google charges me for the hosting of this website and my other
educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well.
As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.
Comments, ideas, areas of improvement, questions, and constructive
criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.
(1.) The sum of the first n natural numbers:
$\sum\limits_{k = 0}^{n} 1 + 2 + 3 + 4 + 5 + ... + n = \dfrac{n(n + 1)}{2}$
(2.) The sum of the first n squares
$\sum\limits_{k = 0}^{n} 1^2 + 2^2 + 3^2 + ... + n^2 = \dfrac{n(n + 1)(2n + 1)}{6}$
Steps | LHS | RHS |
---|---|---|
$1^2 + 2^2 + 3^2 + ... + n^2$ | $\dfrac{n(n + 1)(2n + 1)}{6}$ | |
Initial Step Test for $n = 1$ |
First term: $1^2 = 1$ |
$ \dfrac{1(1 + 1)[2(1) + 1]}{6} \\[5ex] \dfrac{1(2)(3)}{6} \\[5ex] 1 $ |
The initial step works | ||
Optional Testing Test for $n = 2$ |
First term + Second term: $ 1^2 + 2^2 \\[3ex] 1 + 4 \\[3ex] 5 $ |
$ \dfrac{2(2 + 1)[2(2) + 1]}{6} \\[5ex] \dfrac{2(3)(5)}{6} \\[5ex] 5 $ |
Optional Testing Test for $n = 3$ |
First term + Second term + Third term: $ 1^2 + 2^2 + 3^2 \\[3ex] 1 + 4 + 9 \\[3ex] 14 $ |
$ \dfrac{2(3 + 1)[2(3) + 1]}{6} \\[5ex] \dfrac{3(4)(7)}{6} \\[5ex] 14 $ |
The optional testing works | ||
Induction Hypothesis Assume $n = k$ This is the $kth$ term $1^2 + 2^2 + 3^2 + ... + k^2 = \dfrac{k(k + 1)(2k + 1)}{6}...eqn.(1)$ |
||
Induction Step Assume $n = k + 1$ This is the $(k + 1)st$ term $ 1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = \dfrac{(k + 1)[(k + 1) + 1][2(k + 1) + 1]}{6} \\[5ex] 1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = \dfrac{(k + 1)(k + 1 + 1)(2k + 2 + 1)}{6} \\[5ex] 1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = \dfrac{(k + 1)(k + 2)(2k + 3)}{6}...eqn.(2) $ |
||
Induction Step | $ \color{black}{1^2 + 2^2 + 3^2 + ... + k^2} + (k + 1)^2 \\[3ex] \text{From } \color{black}{eqn. (1)}, \text{substitute} \\[3ex] \color{black}{\dfrac{k(k + 1)(2k + 1)}{6}} + (k + 1)(k + 1) \\[5ex] \dfrac{(k^2 + k)(2k + 1)}{6} + k^2 + k + k + 1 \\[5ex] \dfrac{2k^3 + k^2 + 2k^2 + k}{6} + k^2 + 2k + 1 \\[5ex] \dfrac{2k^3 + 3k^2 + k}{6} + \dfrac{k^2 + 2k + 1}{1} \\[5ex] \dfrac{1(2k^3 + 3k^2 + k) + 6(k^2 + 2k + 1)}{6} \\[5ex] \dfrac{2k^3 + 3k^2 + k + 6k^2 + 12k + 6}{6} \\[5ex] \dfrac{2k^3 + 9k^2 + 13k + 6}{6} \\[5ex] ............................................... \\[3ex] \underline{\text{Numerator}} \\[3ex] f(k) = 2k^3 + 9k^2 + 13k + 6 \\[3ex] \text{Try } k = -1 \\[3ex] f(-1) = 2(-1)^3 + 9(-1)^2 + 13(-1) + 6 \\[3ex] = 2(-1) + 9(1) - 13 + 6 \\[3ex] = -2 + 9 - 13 + 6 \\[3ex] = 0 \\[3ex] \implies \\[3ex] k = -1 \text{ is a zero} \\[3ex] (k + 1) \text{ is a factor} \\[3ex] \text{To find the remaining factors, let us use Synthetic Division} \\[3ex] \underline{\text{Synthetic Division}} \\[3ex] \begin{array}{r|rrrr} -1 & 2 & 9 & 13 & 6 \\ + & & -2 & -7 & -6 \\ \hline & 2 & 7 & 6 & 0 \\ \end{array} \\[7ex] \text{Quotient} = 2k^2 + 7k + 6 \\[3ex] \implies \\[3ex] 2k^3 + 9k^2 + 13k + 6 = (k + 1)(k + 2)(2k + 3) \\[3ex] ............................................... \\[3ex] \dfrac{(k + 1)(k + 2)(2k + 3)}{6} $ | $ \dfrac{(k + 1)(k + 2)(2k + 3)}{6} $ |
$LHS = RHS$ The formula is proved. |
For | LHS | RHS |
---|---|---|
$p = 1$ | $ (1 + 1)^3 - 1^3 \\[3ex] 2^3 - 1^3 $ | $ 3(1)^2 + 3(1) + 1 $ |
$p = 2$ | $ (2 + 1)^3 - 2^3 \\[3ex] 3^3 - 2^3 $ | $ 3(2)^2 + 3(2) + 1 $ |
$p = 3$ | $ (3 + 1)^3 - 3^3 \\[3ex] 4^3 - 3^3 $ | $ 3(3)^2 + 3(3) + 1 $ |
$p = n$ | $ (n + 1)^3 - n^3 $ | $ 3(n)^2 + 3(n) + 1 $ |
Sum, S | $ (2^3 - 1^3) + (3^3 - 2^3) + (4^3 - 3^3) + ... + [(n + 1)^3 - n^3] \\[3ex] \text{This is now a telescoping sum.} \\[3ex] 2^3 - 1^3 + 3^3 - 2^3 + 4^3 - 3^3 + ... + (n + 1)^3 - n^3 \\[3ex] (n + 1)^3 - 1^3 \\[3ex] n^3 + 3n^2 + 3n + 1 - 1 \\[3ex] n^3 + 3n^2 + 3n $ | $ [3(1)^2 + 3(1) + 1] \\[3ex] + [3(2)^2 + 3(2) + 1] \\[3ex] + [3(3)^2 + 3(3) + 1] \\[3ex] + ... + [3(n)^2 + 3(n) + 1] \\[5ex] 3[1^2 + 2^2 + 3^2 + ... + n^2] \\[3ex] + 3[1 + 2 + 3 + ... + n] \\[3ex] + 1 + 1 + 1 + ... + 1 \\[5ex] ................................. \\[3ex] 1^2 + 2^2 + 3^2 + ... + n^2 = S_{n^2} \\[3ex] 1 + 2 + 3 + ... + n = S_n \\[3ex] S_n = \dfrac{n(n + 1)}{2} ...\text{Sum of the first n natural numbers} \\[5ex] 1 + 1 + 1 + ... + 1 = n ...\text{The sum of 1 repeated n times is n} \\[3ex] ................................. \\[3ex] 3S_{n^2} + 3S_n + n \\[3ex] 3S_{n^2} + 3\left[\dfrac{n(n + 1)}{2}\right] + n \\[5ex] 3S_{n^2} + \dfrac{3n(n + 1)}{2} + n $ |
$ \text{LHS = RHS} \\[3ex] n^3 + 3n^2 + 3n = 3S_{n^2} + \dfrac{3n(n + 1)}{2} + n \\[5ex] 3S_{n^2} = n^3 + 3n^2 + 3n - \dfrac{3n(n + 1)}{2} - n \\[5ex] 3S_{n^2} = n^3 + 3n^2 + 2n - \dfrac{3n(n + 1)}{2} \\[5ex] LCD = 2 \\[3ex] 6S_{n^2} = 2n^3 + 6n^2 + 4n - 3n(n + 1) \\[3ex] 6S_{n^2} = 2n^3 + 6n^2 + 4n - 3n^2 - 3n \\[3ex] 6S_{n^2} = 2n^3 + 3n^2 + n \\[3ex] 6S_{n^2} = n(2n^2 + 3n + 1) \\[3ex] ........................................ \\[3ex] 2n^2 + 3n + 1 \\[3ex] 2n^2 + 2n + n + 1 \\[3ex] 2n(n + 1) + 1(n + 1) \\[3ex] (n + 1)(2n + 1) \\[3ex] ........................................ \\[3ex] 6S_{n^2} = n(n + 1)(2n + 1) \\[3ex] S_{n^2} = \dfrac{n(n + 1)(2n + 1)}{6} $ |
© 2025 Exams Success Group:
Your
Success in Exams is Our Priority
The Joy of a Teacher is the Success of his
Students.