Please Read Me.

Numbers, Fractions, Decimals, and Percents

Welcome to Our Site


I greet you this day,
These are the solutions to Mathematics questions on the topics: Numbers, Fractions, Decimals, and Percents.
When applicable, the TI-84 Plus CE calculator (also applicable to TI-84 Plus calculator) solutions are provided for some questions.
If you find these resources valuable/helpful, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Percent Applications

$ \underline{\text{Change and Percent of Change}} \\[3ex] (1.)\:\: change = new - initial \\[5ex] (2.)\:\: \%\;\;of\;\;change = \dfrac{change}{initial} * 100 \\[5ex] (3.)\;\; \text{If A is p% more than B, then A = (100 + p)% of B} \\[3ex] (4.)\;\; \text{If A is p% less than B, then A = (100 – p)% of B} \\[5ex] \underline{\text{Percent:Proportion}} \\[3ex] (5.)\;\; \dfrac{is}{of} = \dfrac{\%}{100} \\[5ex] (6.)\;\;\underline{\text{Percent:Equation}} \\[3ex] is \rightarrow equal\;\;to \\[3ex] of\;\; \rightarrow multiply \\[3ex] what \;\; \rightarrow variable \\[5ex] \underline{\text{Wholesale and Retail}} \\[3ex] (7.)\:\: \text{Sale Price } = \text{Initial Price } - \text{Discount} \\[5ex] (8.)\:\: \%\;Discount = \dfrac{Discount}{\text{Initial Price}} * 100 \\[5ex] (9.)\;\; \text{Profit } = \text{Selling Price } - \text{Cost Price} \\[3ex] (10.)\;\; \%\;Profit = \dfrac{Profit}{\text{Cost Price}} * 100 \\[5ex] (11.)\;\; \text{Loss } = \text{Cost Price } - \text{Selling Price} \\[3ex] (12.)\;\; \%\;Loss = \dfrac{Loss}{\text{Cost Price}} * 100 $

(1.) Number Theory Suppose that X and Y are angles with $\tan X = \dfrac{1}{m}$ and $\tan Y = \dfrac{a}{n}$ for some positive integers a, m, and n.
Determine the number of positive integers $a \le 50$ for which there are exactly 6 pairs of positive integers (m, n) with $X + Y = 45^\circ$.

$ \underline{\text{Hint:}} \tan (\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}...\text{Sum and Difference Formulas} \\[5ex] $

$ \text{Let us solve for }a \\[3ex] \tan (X + Y) = \dfrac{\tan X + \tan Y}{1 - \tan X \tan Y}...\text{Sum Formulas} \\[5ex] X + Y = 45^\circ \\[3ex] \tan X = \dfrac{1}{m} \\[5ex] \tan Y = \dfrac{a}{n} \\[5ex] \tan 45^\circ = \left(\dfrac{1}{m} + \dfrac{a}{n}\right) \div \left[1 - \left(\dfrac{1}{m}\right) * \left(\dfrac{a}{n}\right)\right] \\[5ex] 1 = \left(\dfrac{n + am}{mn}\right) \div \left(1 - \dfrac{a}{mn}\right) \\[5ex] 1 = \left(\dfrac{n + am}{mn}\right) \div \left(\dfrac{mn - a}{mn}\right) \\[5ex] 1 = \left(\dfrac{n + am}{mn}\right) * \left(\dfrac{mn}{mn - a}\right) \\[5ex] 1 = \dfrac{n + am}{mn - a} \\[5ex] n + am = mn - a \\[3ex] am + a = mn - n \\[3ex] a(m + 1) = n(m - 1) \\[3ex] a = \dfrac{n(m - 1)}{m + 1} ...eqn.(1) \\[5ex] \implies \\[3ex] \dfrac{n(m - 1)}{m + 1} \le 50 \\[5ex] $ Solving this inequality: two variables in one inequality is time-consuming...we do not know the value of either m or n
Even though we know that a, m, and n are positive integers, the guesses will take time.
So, let's see whether we can find a theorem that works in Number Theory to help us solve the question.

$ \text{From:} \\[3ex] n + am = mn - a \\[3ex] a = mn - am - n \\[3ex] a = m(n - a) - n \\[3ex] \text{To enable us to get a product of factors: add a to both sides} \\[3ex] a + a = m(n - a) - n + a \\[3ex] 2a = m(n - a) - 1(n - a) \\[3ex] 2a = (n - a)(m - 1) \\[3ex] $
(2.)


(3.)


(4.)


(5.)


(6.)


(7.)


(8.)


(9.)


(10.)


(11.)

(12.)


(13.)


(14.)


(15.)


(16.)


(17.)


(18.)


(19.)


(20.)






Top




(21.)


(22.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.