Please Read Me.

Statistics and Probability

Welcome to Our Site


I greet you this day,
These are the solutions to questions on Statistics and Probability.
The TI-84 Plus CE shall be used for applicable questions.
The link to the video solutions will be provided for you. Please subscribe to the YouTube channel to be notified of upcoming livestreams. You are welcome to ask questions during the video livestreams.
If you find these resources valuable and if any of these resources were helpful in your passing the Mathematics papers of the SACE, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Grouped Data

$ \underline{\text{Class Size or Class Width}} \\[3ex] (1.)\;\; Class\:\:Width = \dfrac{Maximum - Minimum}{Number\:\:of\:\:classes} \\[5ex] (2.)\;\; Class\:\:Width = LCI\:\:of\:\:2nd\:\:Class - LCI\:\:of\:\:1st\:\:Class \\[3ex] (3.)\;\; Class\:\:Width = UCI\:\:of\:\:2nd\:\:Class - UCI\:\:of\:\:1st\:\:Class \\[3ex] (4.)\;\; Class\:\:Width = UCB\:\:of\:\:a\:\:class - LCB\:\:of\:\:the\:\:same\:\:class \\[3ex] (5.)\;\; Class\:\:Width = LCB\:\:of\:\:a\:\:Class - LCB\:\:of\:\:previous\:\:class \\[5ex] \underline{\text{Frequency Density}} \\[3ex] (6.)\;\; \text{Frequency Density} = \dfrac{\text{Frequency}}{\text{Class Width}} \\[7ex] \underline{\text{Class Midpoints or Class Marks}} \\[3ex] (7.)\;\; Class\:\:Width = LCB\:\:of\:\:a\:\:Class - LCB\:\:of\:\:previous\:\:class \\[5ex] \underline{\text{Class Boundaries}} \\[3ex] (8.)\;\; Lower\:\:Class\:\:Boundary\:\:of\:\:a\:\:class = \dfrac{LCI\:\:of\:\:that\:\:class + UCI\:\:of\:\:previous/preceding\:\:class}{2} \\[5ex] (9.)\;\; Upper\:\:Class\:\:Boundary\:\:of\:\:a\:\:class = \dfrac{UCI\:\:of\:\:that\:\:class + LCI\:\:of\:\:next/succeeding\:\:class}{2} \\[5ex] $ (10.) Shortcut for Class Boundaries
If the class intervals are integers:
Lower Class Boundary = Lower Class Interval − 0.5
Upper Class Boundary = Upper Class Interval + 0.5

If the class intervals are decimals in one decimal place:
Lower Class Boundary = Lower Class Interval − 0.05
Upper Class Boundary = Upper Class Interval + 0.05

If the class intervals are decimals in two decimal places:
Lower Class Boundary = Lower Class Interval − 0.005
Upper Class Boundary = Upper Class Interval + 0.005

...and so on and so forth.

$ \underline{\text{Relative Frequency}} \\[3ex] (11.)\;\; RF\:\:of\:\:a\:\:class = \dfrac{Frequency\:\:of\:\:that\:\:class}{\Sigma Frequency} \\[7ex] \underline{\text{Cumulative Frequency}} \\[3ex] (12.)\;\; CF\:\:of\:\:1st\:\:Class = Frequency\:\:of\:\:1st\:\:Class \\[3ex] CF\:\:of\:\:2nd\:\:Class = Frequency\:\:of\:\:1st\:\:Class + Frequency\:\:of\:\:2nd\:\:Class \\[3ex] CF\:\:of\:\:3rd\:\:Class = Frequency\:\:of\:\:1st\:\:Class + Frequency\:\:of\:\:2nd\:\:Class + Frequency\:\:of\:\:3rd\:\:Class \\[3ex] CF = CF\:\:of\:\:Last\:\:Class = \Sigma Frequency $


Measures of Center: Raw Data and Ungrouped Data

$ \underline{Sample\:\:Mean} \\[3ex] (1.)\:\: \bar{x} = \dfrac{\Sigma x}{n} \\[5ex] (2.)\:\: n = \Sigma f \\[3ex] (3.)\:\: \bar{x} = \dfrac{\Sigma fx}{\Sigma f} \\[5ex] \underline{Given\:\:an\:\:Assumed\:\:Mean} \\[3ex] (4.)\:\: D = x - AM \\[3ex] (5.)\:\: \bar{x} = AM + \dfrac{\Sigma D}{n} \\[5ex] (6.)\:\: \bar{x} = AM + \dfrac{\Sigma fD}{\Sigma f} \\[7ex] \underline{Population\:\:Mean} \\[3ex] (7.)\:\: \mu = \dfrac{\Sigma x}{N} \\[5ex] (8.)\:\: N = \Sigma f \\[3ex] \underline{Given\:\:an\:\:Assumed\:\:Mean} \\[3ex] (9.)\:\: D = x - AM \\[3ex] (10.)\:\: \mu = AM + \dfrac{\Sigma D}{N} \\[5ex] (11.)\:\: \mu = AM + \dfrac{\Sigma fD}{\Sigma f} \\[7ex] \underline{Median} \\[3ex] (12.)\:\: \tilde{x} = \left(\dfrac{\Sigma f + 1}{2}\right)th \:\:for\:\:sorted\:\:odd\:\:sample\:\:size \\[5ex] (13.)\:\: \tilde{x} = \left(\dfrac{\Sigma f}{2}\right)th \:\:for\:\:sorted\:\:even\:\:sample\:\:size \\[7ex] \underline{Mode} \\[3ex] (14.)\:\: Mode = x-value(s) \:\;with\:\:highest\:\:frequency \\[5ex] \underline{Midrange} \\[3ex] (15.)\:\: x_{MR} = \dfrac{min + max}{2} \\[5ex] \underline{Geometric\;\;Mean} \\[3ex] (16.)\;\; GM = \sqrt[n]{\prod\limits_{x=1}^n x} $


Measures of Center: Grouped Data

$ \underline{Class\:\:Midpoint} \\[3ex] (1.)\:\: x_{mid} = \dfrac{LCL + UCL}{2} \\[7ex] Equal\:\:Class\:\:Intervals\:(Same\:\:Class\:\:Size) \\[3ex] \underline{Mean} \\[3ex] (2.)\:\: \bar{x} = \dfrac{\Sigma fx_{mid}}{\Sigma f} \\[7ex] Equal\:\:Class\:\:Intervals\:(Same\:\:Class\:\:Size) \\[3ex] \underline{Given\:\:an\:\:Assumed\:\:Mean} \\[3ex] (3.)\:\: D = x_{mid} - AM \\[3ex] (4.)\:\: \bar{x} = AM + \dfrac{\Sigma fD}{\Sigma f} \\[7ex] \underline{Median} \\[3ex] (5.)\:\: \tilde{x} = LCB_{med} + \dfrac{CW}{f_{med}} * \left[\left(\dfrac{\Sigma f}{2}\right) - CF_{bmed}\right] \\[7ex] \underline{Mode} \\[3ex] (6.)\:\: \widehat{x} = LCB_{mod} + CW * \left[\dfrac{f_{mod} - f_{bmod}}{(f_{mod} - f_{bmod}) + (f_{mod} - f_{amod})}\right] $


Measures of Spread: Raw Data and Ungrouped Data

$ \underline{Range} \\[3ex] (1.)\:\: Range = max - min \\[3ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (2.)\;\; D = x - AM \\[5ex] \underline{Sample\:\:Variance} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (3.)\:\: s^2 = \dfrac{\Sigma(x - \bar{x})^2}{n - 1} \\[5ex] (4.)\:\: s^2 = \dfrac{\Sigma f(x - \bar{x})^2}{\Sigma f - 1} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (5.)\:\: s^2 = \dfrac{n(\Sigma x^2) - (\Sigma x)^2}{n(n - 1)} \\[5ex] (6.)\:\: s^2 = \dfrac{\Sigma f(\Sigma fx^2) - (\Sigma fx)^2}{\Sigma f(\Sigma f - 1)} \\[7ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (7.)\;\; s^2 = \dfrac{\Sigma D^2}{n - 1} - \left(\dfrac{\Sigma D}{n - 1}\right)^2 \\[7ex] (8.)\;\; s^2 = \dfrac{\Sigma fD^2}{\Sigma f - 1} - \left(\dfrac{\Sigma fD}{\Sigma f - 1}\right)^2 \\[10ex] \underline{Population\:\:Variance} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (9.)\:\: \sigma^2 = \dfrac{\Sigma(x - \mu)^2}{N} \\[5ex] (10.)\:\: \sigma^2 = \dfrac{\Sigma f(x - \mu)^2}{\Sigma f} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (11.)\:\: \sigma^2 = \dfrac{N(\Sigma x^2) - (\Sigma x)^2}{N^2} \\[5ex] (12.)\:\: \sigma^2 = \dfrac{\Sigma f(\Sigma fx^2) - (\Sigma fx)^2}{(\Sigma f)^2} \\[7ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (13.)\;\; \sigma^2 = \dfrac{\Sigma D^2}{N} - \left(\dfrac{\Sigma D}{N}\right)^2 \\[7ex] (14.)\;\; \sigma^2 = \dfrac{\Sigma fD^2}{\Sigma f} - \left(\dfrac{\Sigma fD}{\Sigma f}\right)^2 \\[10ex] \underline{Sample\:\:Standard\:\:Deviation} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (15.)\:\: s = \sqrt{\dfrac{\Sigma(x - \bar{x})^2}{n - 1}} \\[5ex] (16.)\:\: s = \sqrt{\dfrac{\Sigma f(x - \bar{x})^2}{\Sigma f - 1}} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (17.)\:\: s = \sqrt{\dfrac{n(\Sigma x^2) - (\Sigma x)^2}{n(n - 1)}} \\[5ex] (18.)\:\: s = \sqrt{\dfrac{\Sigma f(\Sigma fx^2) - (\Sigma fx)^2}{\Sigma f(\Sigma f - 1)}} \\[7ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (19.)\;\; s = \sqrt{\dfrac{\Sigma D^2}{n - 1} - \left(\dfrac{\Sigma D}{n - 1}\right)^2} \\[7ex] (20.)\;\; s = \sqrt{\dfrac{\Sigma fD^2}{\Sigma f - 1} - \left(\dfrac{\Sigma fD}{\Sigma f - 1}\right)^2} \\[10ex] \underline{Population\:\:Standard\:\:Deviation} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (21.)\:\: \sigma = \sqrt{\dfrac{\Sigma(x - \mu)^2}{N}} \\[5ex] (22.)\:\: \sigma = \sqrt{\dfrac{\Sigma f(x - \mu)^2}{\Sigma f}} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (23.)\:\: \sigma = \dfrac{\sqrt{N(\Sigma x^2) - (\Sigma x)^2}}{N} \\[5ex] (24.)\:\: \sigma = \dfrac{\sqrt{\Sigma f(\Sigma fx^2) - (\Sigma fx)^2}}{\Sigma f} \\[7ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (25.)\;\; \sigma = \sqrt{\dfrac{\Sigma D^2}{N} - \left(\dfrac{\Sigma D}{N}\right)^2} \\[7ex] (26.)\;\; \sigma = \sqrt{\dfrac{\Sigma fD^2}{\Sigma f} - \left(\dfrac{\Sigma fD}{\Sigma f}\right)^2} \\[10ex] \underline{Range\:\:Rule\:\:of\:\:Thumb} \\[3ex] Approximate\:\:Value\:\:of\:\:Calculating\:\:Standard\:\:Deviation \\[3ex] (27.)\:\: s = \dfrac{Range}{4} = \dfrac{max - min}{4} \\[7ex] \underline{Interquartile\:\:Range} \\[3ex] (28.)\:\: IQR = Q_3 - Q_1 \\[5ex] \underline{Coefficient\:\:of\:\:Variation\:\:for\:\:Sample} \\[3ex] (29.)\:\: CV = \dfrac{s}{x} * 100 ...in\:\:\% \\[7ex] \underline{Coefficient\:\:of\:\:Variation\:\:for\:\:Population} \\[3ex] (30.)\:\: CV = \dfrac{\sigma}{x} * 100 ...in\:\:\% \\[7ex] \underline{Mean\:\:Absolute\:\:Deviation} \\[3ex] (31.)\:\: MAD = \dfrac{\Sigma |x - \bar{x}|}{n} \\[5ex] \underline{Mean\:\:Absolute\:\:Deviation} \\[3ex] (32.)\:\: MAD = \dfrac{\Sigma f|x - \bar{x}|}{\Sigma f} \\[5ex] $


Measures of Spread: Grouped Data

$ \underline{Class\:\:Midpoint} \\[3ex] (1.)\:\: x_{mid} = \dfrac{LCL + UCL}{2} \\[5ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (2.)\;\; D = x_{mid} - AM \\[5ex] \underline{Sample\:\:Variance} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (3.)\:\: s^2 = \dfrac{\Sigma f(x_{mid} - \bar{x})^2}{\Sigma f - 1} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (4.)\:\: s^2 = \dfrac{\Sigma f(\Sigma fx_{mid}^2) - (\Sigma fx_{mid})^2}{\Sigma f(\Sigma f - 1)} \\[5ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (5.)\;\; s^2 = \dfrac{\Sigma D^2}{n - 1} - \left(\dfrac{\Sigma D}{n - 1}\right)^2 \\[7ex] (6.)\;\; s^2 = \dfrac{\Sigma fD^2}{\Sigma f - 1} - \left(\dfrac{\Sigma fD}{\Sigma f - 1}\right)^2 \\[10ex] \underline{Sample\:\:Standard\:\:Deviation} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (7.)\:\: s = \sqrt{\dfrac{\Sigma f(x_{mid} - \bar{x})^2}{\Sigma f - 1}} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (8.)\:\: s = \sqrt{\dfrac{\Sigma f(\Sigma fx_{mid}^2) - (\Sigma fx_{mid})^2}{\Sigma f(\Sigma f - 1)}} \\[5ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (9.)\;\; s = \sqrt{\dfrac{\Sigma D^2}{n} - \left(\dfrac{\Sigma D}{n - 1}\right)^2} \\[7ex] (10.)\;\; s = \sqrt{\dfrac{\Sigma fD^2}{\Sigma f - 1} - \left(\dfrac{\Sigma fD}{\Sigma f - 1}\right)^2} \\[10ex] \underline{Population\:\:Variance} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (11.)\:\: \sigma^2 = \dfrac{\Sigma f(x_{mid} - \bar{x})^2}{\Sigma f} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (12.)\:\: \sigma^2 = \dfrac{\Sigma f(\Sigma fx_{mid}^2) - (\Sigma fx_{mid})^2}{\Sigma f(\Sigma f)} \\[5ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (13.)\;\; \sigma^2 = \dfrac{\Sigma D^2}{N} - \left(\dfrac{\Sigma D}{N}\right)^2 \\[7ex] (14.)\;\; \sigma^2 = \dfrac{\Sigma fD^2}{\Sigma f} - \left(\dfrac{\Sigma fD}{\Sigma f}\right)^2 \\[10ex] \underline{Population\:\:Standard\:\:Deviation} \\[3ex] \color{red}{First\:\:Formula} \\[3ex] (15.)\:\: \sigma = \sqrt{\dfrac{\Sigma f(x_{mid} - \bar{x})^2}{\Sigma f}} \\[5ex] \color{red}{Second\:\:Formula} \\[3ex] (16.)\:\: \sigma = \sqrt{\dfrac{\Sigma f(\Sigma fx_{mid}^2) - (\Sigma fx_{mid})^2}{\Sigma f(\Sigma f)}} \\[5ex] \underline{Using\;\;Assumed\;\;Mean} \\[3ex] (17.)\;\; \sigma = \sqrt{\dfrac{\Sigma D^2}{N} - \left(\dfrac{\Sigma D}{N}\right)^2} \\[7ex] (18.)\;\; \sigma = \sqrt{\dfrac{\Sigma fD^2}{\Sigma f} - \left(\dfrac{\Sigma fD}{\Sigma f}\right)^2} \\[10ex] $


Measures of Position

A data value is usual if $-2.00 \le z-score \le 2.00$

A data value is unusual if $z-score \lt -2.00$ OR $z-score \gt 2.00$

$ \underline{Sample} \\[3ex] Minimum\:\:usual\:\:data\:\:value = \bar{x} - 2s \\[3ex] Maximum\:\:usual\:\:data\:\:value = \bar{x} + 2s \\[5ex] \underline{Population} \\[3ex] Minimum\:\:usual\:\:data\:\:value = \mu - 2\sigma \\[3ex] Maximum\:\:usual\:\:data\:\:value = \mu + 2\sigma \\[5ex] \underline{z\:\:score\:\:for\:\:Sample} \\[3ex] (1.)\:\: z = \dfrac{x - \bar{x}}{s} \\[7ex] \underline{z\:\:score\:\:for\:\:Population} \\[3ex] (2.)\:\: z = \dfrac{x - \mu}{\sigma} \\[7ex] \underline{Quantiles(Percentiles,\:Deciles,\:Quintiles,\:and\:Quartiles)} \\[3ex] \color{red}{Convert\:\:a\:\:Data\:\:value\:\:to\:\:a\:\:Quantile} \\[3ex] x\:\:and\:\:y\:\:are\:\:two\:\:different\:\:variables \\[3ex] (3.)\:\: Percentile\:\:of\:\:x = \dfrac{number\:\:of\:\:values\:\:less\:\:than\:\:x}{total\:\:number\:\:of\:\:values} * 100 = yth\:\:Percentile \\[5ex] (4.)\:\: Decile\:\:of\:\:x = \dfrac{number\:\:of\:\:values\:\:less\:\:than\:\:x}{total\:\:number\:\:of\:\:values} * 10 = yth\:\:Decile \\[5ex] (5.)\:\: Quintile\:\:of\:\:x = \dfrac{number\:\:of\:\:values\:\:less\:\:than\:\:x}{total\:\:number\:\:of\:\:values} * 5 = yth\:\:Quintile \\[5ex] (6.)\:\: Quartile\:\:of\:\:x = \dfrac{number\:\:of\:\:values\:\:less\:\:than\:\:x}{total\:\:number\:\:of\:\:values} * 4 = yth\:\:Quartile \\[7ex] \color{red}{Convert\:\:a\:\:Quantile\:\:to\:\:a\:\:Data\:\:Value} \\[3ex] Calculate\:\:the\:\:xth\:\:position\:\:of\:\:the\:\:yth\:\:Quantile \\[3ex] (7.)\:\: xth\:\:position = \dfrac{yth\:\:Percentile}{100} * total\:\:number\:\:of\:\:values \\[5ex] (8.)\:\: xth\:\:position = \dfrac{yth\:\:Decile}{10} * total\:\:number\:\:of\:\:values \\[5ex] (9.)\:\: xth\:\:position = \dfrac{yth\:\:Quintile}{5} * total\:\:number\:\:of\:\:values \\[5ex] (10.)\:\: xth\:\:position = \dfrac{yth\:\:Quartile}{4} * total\:\:number\:\:of\:\:values \\[7ex] $


If the $xth$ position then,
is an integer
$xth\:\:position = \dfrac{xth\:\:position + (x + 1)th\:\;position}{2}$

In other words, find the value of the $xth$ position; find the value of the next position; and determine the mean of the two values.
is not an integer $xth$ position is rounded up


$ \underline{The\:\:Five-Number\:\:Summary\:\:of\:\:Data} \\[3ex] (11.)\:\: Minimum\:(min) \\[3ex] (12.)\:\: Lower\:\:Quartile\:(Q_1) \\[3ex] (13.)\:\: Median\:\:or\:\:Middle\:\:Quartile\:(Q_2) \\[3ex] (14.)\:\: Upper\:\:Quartile\:(Q_3) \\[3ex] (15.)\:\: Maximum\:(Max) \\[5ex] \underline{Other\:\:Statistics\:\:from\:\:Quantiles} \\[3ex] (16.)\:\: IQR = Q_3 - Q_1 \\[3ex] (17.)\:\: SIQR = \dfrac{IQR}{2} = \dfrac{Q_3 - Q_1}{2} \\[5ex] (18.)\:\: MQ = \dfrac{Q_3 + Q_1}{2} \\[5ex] (19.)\:\: Upper\:\:Quartile\:(Q_3) \\[3ex] (20.)\:\: LF = Q_1 - 1.5(IQR) \\[3ex] (21.)\:\: UF = Q_3 + 1.5(IQR) $


Probability

Given any two events say A and B

$ P(E) = \dfrac{n(E)}{n(S)} \\[5ex] \underline{\text{Addition Rule}} \\[3ex] \dfrac{n(A \cup B)}{n(S)} = \dfrac{n(A)}{n(S)} + \dfrac{n(B)}{n(S)} - \dfrac{n(A \cap B)}{n(S)} \\[5ex] P(A \cup B) = P(A) + P(B) - P(A \cap B) \\[3ex] P(A\:\:\:OR\:\:\:B) = P(A) + P(B) - P(A\:\:\:AND\:\:\:B) \\[5ex] $ For Independent Events

$ P(B|A) = P(B) \\[3ex] \rightarrow P(A\:\:\:OR\:\:\:B) = P(A) + P(B) - [P(A) * P(B)] \\[5ex] $ For Dependent Events

$ P(B|A) = P(B|A) \\[3ex] \rightarrow P(A\:\:\:OR\:\:\:B) = P(A) + P(B) - [P(A) * P(B|A)] \\[5ex] $ For Mutually Exclusive Events (Disjoint Events)

$ P(A \cap B) = 0 \\[3ex] P(A\:\:\:OR\:\:\:B) = P(A) + P(B) - 0 \\[3ex] \rightarrow P(A\:\:\:OR\:\:\:B) = P(A) + P(B) \\[5ex] $
$ \underline{\text{Multiplication Rule}} \\[3ex] P(A\:\:\:AND\:\:\:B) = P(A) * P(B|A) \\[3ex] P(A \cap B) = P(A) * P(B|A) \\[3ex] P(A\:\:\:AND\:\:\:B) = P(A \cap B) \\[5ex] $ $P(B|A)$ is read as: the probability of event $B$ given event $A$

For Independent Events

$ P(B|A) = P(B) \\[3ex] \rightarrow P(A\:\:\:AND\:\:\:B) = P(A) * P(B) \\[5ex] $ For Dependent Events

$ P(B|A) = P(B|A) \\[3ex] \rightarrow P(A\:\:\:AND\:\:\:B) = P(A) * P(B|A) \\[5ex] $ The complement of Event $A$ is $A'$

$ \underline{Complementary\;\;Rule} \\[3ex] P(A) + P(A') = 1 \\[3ex] \rightarrow P(A') = 1 - P(A) \\[5ex] $ Other Formulas

$ (1.)\;\; P(A) = P(A \cap B') + P(A \cap B) $


Probability Distributions

$ \boldsymbol{Probability\;\;Distribution} \\[3ex] (1.)\;\;\mu = \Sigma[x * P(x)] \\[3ex] (2.)\;\;E = \Sigma[x * P(x)] \\[3ex] (3.)\;\; \sigma = \sqrt{\Sigma[x^2 * P(x)] - \mu^2} \\[7ex] \boldsymbol{Combinatorics} \\[3ex] (1.)\:\: 0! = 1 \\[3ex] (2.)\:\: n! = n * (n - 1) * (n - 2) * (n - 3) * ... * 1 \\[3ex] (3.)\;\; n! = n * (n - 1)! \\[3ex] (4.)\;\; n! = (n - 1) * (n - 2)!...among\;\;others \\[3ex] (5.)\:\: C(n, x) = \dfrac{n!}{(n - x)!x!} \\[5ex] (6.)\;\; C(n, x) = C(n, n - x) \\[7ex] \boldsymbol{Binomial\;\;Distribution} \\[3ex] (1.)\;\; p + q = 1 \\[3ex] (2.)\;\; \mu = n * p \\[3ex] (3.)\;\; \sigma = \sqrt{n * p * q} \\[4ex] (4.)\;\; P(x) = C(n, x) * p^x * q^{n - x}...\text{Depends on the context of the question} \\[5ex] where \\[3ex] x = \text{number of successes/failures} \\[3ex] n = \text{number of trials} = 12 \\[3ex] C(n, x) = \text{Binomial coefficient} \\[3ex] P(x) = \text{Probability of the number of successes/failures} \\[3ex] p = \text{probability of success} = 70\% = 0.7 \\[3ex] q = \text{probability of failure} = 1 - 0.7 = 0.3 \\[5ex] \boldsymbol{Poisson\;\;Distribution} \\[3ex] (1.)\;\;P(x) = \dfrac{\mu^x * e^{-\mu}}{x!} \\[5ex] (2.)\;\; \mu = \sigma^2 \\[7ex] \boldsymbol{Normal\;\;Distribution} \\[3ex] (1.)\;\; z = \dfrac{x - \bar{x}}{s} \\[5ex] (2.)\;\; x = \bar{x} + zs \\[3ex] (3.)\;\; z = \dfrac{x - \mu}{\sigma} \\[5ex] (4.)\;\; x = \mu + z\sigma \\[3ex] (5.)\;\;\text{Probability Density Function},\;\;P(x) = \dfrac{1}{\sigma\sqrt{2\pi}}e^{{-\dfrac{1}{2}}\left(\dfrac{x - \mu}{\sigma}\right)^2} \\[7ex] $

Empirical Rule (68 - 95 - 99.7 percent Rule)
(Applies only to Normal Distribution)
(a.) 68% of the data lie within (below and above) 1 standard deviation of the mean
(b.) 95% of the data lie within (below and above) 2 standard deviations of the mean
(c.) 99.7% of the data lie within (below and above) 3 standard deviations of the mean

Pafnuty Chebyshev's Theorem
(Applies to any distribution)
At least $\left(1 - \dfrac{1}{k^2}\right) * 100$ % of the data lie within $k$ standard deviations of the mean
implies
At least $\left(1 - \dfrac{1}{k^2}\right) * 100$ % of the data lie within $\mu - k\sigma$ and $\mu + k\sigma$

Range Rule of Thumb
Minimum Usual Value = μ - 2σ
Maximum Usual Value = μ + 2σ
A data value is unusual if it is less than the minimum usual value or greater than the maximum usual value

z-score Boundary
A data value is usual if −2.00 ≤ z-score ≤ 2.00
A data value is unusual if z-score < −2.00 or if z-score > 2.00

Binomial Distribution Table
Poisson Distribution Table
Standard Normal Distribution Table (Left-Shaded Area)
Normal Distribution Area: Left Shaded: Negative Normal Distribution Area: Left Shaded: Positive
Standard Normal Distribution Table (Center-Shaded Area)
Normal Distribution Area: Center Shaded

Normal Distribution Table: Center Shaded
(1.) Assume that the heights that children of a particular age can jump is a normal distribution.
On average, 8 children out of 10 can jump a height of more than 127 cm, and 1 child out of 3 can jump a height of more than 135 cm.
(a.) Determine the mean and standard deviation of the heights the children can jump.
(b.) Determine the probability that a randomly chosen child will not be able to jump a height of 145 cm.
(c.) Determine the probability that, of 8 randomly chosen children, at least 2 will be able to jump a height of more than 135 cm.
Use only tables in your work.
You may verify with a calculator.


Let X be the event that a child of a particular age can jump more than a certain height
(a.) and (b.) deals with Normal Probability Distribution
(c.) deals with Binomial Probability Distribution

$ (a.) \\[3ex] P(X \gt 127) = \dfrac{8}{10} = 0.8 \\[3ex] P(X \lt 127) = 1 - 0.8 = 0.2 ...\text{Because of Standard Normal Table Left-Shaded Area} \\[3ex] \text{Convert to a z-score }: P(z \lt what) = 0.2 \\[3ex] $
Normal Distribution Table: Using Interpolation
z-scores Areas
−0.84 0.20045
z 0.2
−0.85 0.19766

$ \dfrac{z - -0.85}{-0.84 - -0.85} = \dfrac{0.2 - 0.19766}{0.20045 - 0.19766} \\[5ex] \dfrac{z + 0.85}{0.01} = \dfrac{0.00234}{0.00279} \\[5ex] z = 0.01(0.8387096774) - 0.85 \\[3ex] z = -0.8416129032 \\[3ex] z = \dfrac{x - \mu}{\sigma} \\[5ex] \dfrac{127 - \mu}{\sigma} = -0.8416129032 \\[5ex] 127 - \mu = -0.8416129032\sigma...eqn.(1) \\[5ex] P(X \gt 135) = \dfrac{1}{3} = 0.3\bar{3} \\[3ex] P(X \lt 135) = 1 - 0.3\bar{3} = 0.66667 ...\text{Because of Standard Normal Table Left-Shaded Area} \\[3ex] \text{Convert to a z-score }: P(z \lt what) = 0.66667 \\[3ex] $
Normal Distribution Table: Using Interpolation
z-scores Areas
0.44 0.67003
z 0.66667
0.43 0.66640

$ \dfrac{z - 0.43}{0.44 - 0.43} = \dfrac{0.66667 - 0.66640}{0.67003 - 0.66640} \\[5ex] \dfrac{z - 0.43}{0.01} = \dfrac{0.00027}{0.00363} \\[5ex] z = 0.01(0.0743801653) + 0.43 \\[3ex] z = 0.4307438017 \\[3ex] z = \dfrac{x - \mu}{\sigma} \\[5ex] \dfrac{135 - \mu}{\sigma} = 0.4307438017 \\[5ex] 135 - \mu = 0.4307438017\sigma...eqn.(2) \\[5ex] eqn.(2) - eqn.(1) \rightarrow \\[3ex] 135 - \mu - (127 - \mu) = 0.4307438017\sigma - -0.8416129032\sigma \\[3ex] 135 - \mu - 127 + \mu = 1.272356705\sigma \\[3ex] 1.272356705\sigma = 8 \\[3ex] \sigma = \dfrac{8}{1.272356705} \\[5ex] \sigma = 6.28754497 \\[5ex] \text{Substitute for the value of σ in eqn.(2)} \\[3ex] \text{From eqn.(2)} \\[3ex] \mu = 135 - 0.4307438017\sigma \\[3ex] \mu = 135 - 0.4307438017(6.28754497) \\[3ex] \mu = 132.291679\;cm \\[3ex] $ (b.)
...will not be able to jump a height of 145 cm means that the child can jump less than 145 cm
Let us convert the height to a z-score

$ z = \dfrac{x - \mu}{\sigma} \\[5ex] z = \dfrac{145 - 132.291679}{6.28754497} \\[5ex] z = 2.021189679 \approx 2.02 \\[3ex] P(X \lt 145) = P(z \lt 2.02) = 0.97831 \\[3ex] $ (c.) a height of more than 135cm
at least 2 means ≥ 2
The complement is: < 2
Let:
x = random variable denoting the number of children who can jump more than 135 cm
p = probability of success
q = probability of failure
n = sample size
C(n, x) = number of combinations of n children taking x children at a time

$ P(x) = C(n, x) * p^x * q^{n - x} \\[3ex] C(n, x) = \dfrac{n!}{(n - x)!x!} \\[5ex] n = 8 \\[3ex] P(X \gt 135) = p = \dfrac{1}{3} \\[5ex] q = 1 - \dfrac{1}{3} = \dfrac{2}{3} \\[5ex] P(x \ge 2) = 1 - P(x \lt 2)...\text{Complementary Rule} \\[3ex] P(x \lt 2) = P(x = 0) + P(x = 1) \\[5ex] P(x = 0) = C(8, 0) * \left(\dfrac{1}{3}\right)^0 * \left(\dfrac{2}{3}\right)^{8 - 0} \\[5ex] = \dfrac{8!}{(8 - 0)! * 0!} * 1 * \left(\dfrac{2}{3}\right)^8 \\[5ex] = \dfrac{8!}{8! * 1} * \dfrac{2^8}{3^8} \\[5ex] = \dfrac{256}{6561} \\[5ex] P(x = 1) = C(8, 1) * \left(\dfrac{1}{3}\right)^1 * \left(\dfrac{2}{3}\right)^{8 - 1} \\[5ex] = \dfrac{8!}{(8 - 1)! * 1!} * \dfrac{1}{3} * \left(\dfrac{2}{3}\right)^7 \\[5ex] = \dfrac{8!}{7! * 1} * \dfrac{1}{3} * \dfrac{2^7}{3^7} \\[5ex] = \dfrac{8}{3} * \dfrac{128}{2187} \\[5ex] = \dfrac{1024}{6561} \\[5ex] P(x \lt 2) = \dfrac{256}{6561} + \dfrac{1024}{6561} \\[5ex] P(x \lt 2) = \dfrac{1280}{6561} \\[5ex] P(x \ge 2) = 1 - \dfrac{1280}{6561} \\[5ex] P(x \ge 2) = \dfrac{6561}{6561} - \dfrac{1280}{6561} \\[5ex] P(x \ge 2) = \dfrac{5281}{6561} $

(a.)
Calculator 1-1st

(b.)
Calculator 1-2nd

Calculator 1-3rd

(c.)
Calculator 1-4th

Calculator 1-5th
(2.)


(3.)

(4.)

(5.)

(6.)

(7.)


(8.)


(9.)

(10.)


(11.)

(12.)


(13.)

(14.)


(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)


(22.)


(23.)

(24.)


(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


(31.)

(32.)


(33.)

(34.)


(35.)

(36.)


(37.)

(38.)


(39.)

(40.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.