Please Read Me.

Mensuration

Welcome to Our Site


I greet you this day,
These are the solutions to WASSCE Mathematics questions on Mensuration.
If you find these resources valuable/helpful, please consider making a donation:

Cash App: $ExamsSuccess or
cash.app/ExamsSuccess

PayPal: @ExamsSuccess or
PayPal.me/ExamsSuccess

Google charges me for the hosting of this website and my other educational websites. It does not host any of the websites for free.
Besides, I spend a lot of time to type the questions and the solutions well. As you probably know, I provide clear explanations on the solutions.
Your donation is appreciated.

Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome.
Feel free to contact me. Please be positive in your message.
I wish you the best.
Thank you.

Formulas

Right Triangle

$ perpendicular\:\:height = height \\[3ex] Area = \dfrac{1}{2} * base * height \\[5ex] height = \dfrac{2 * Area}{base} \\[5ex] base = \dfrac{2 * Area}{height} \\[5ex] hypotenuse^2 = height^2 + base^2...Pythagorean\:\:Theorem \\[3ex] hypotenuse = \sqrt{height^2 + base^2} \\[3ex] height = \sqrt{hypotenuse^2 - base^2} \\[3ex] base = \sqrt{hypotenuse^2 - height^2} \\[3ex] Perimeter = hypotenuse + height + base \\[3ex] Area = \dfrac{1}{2} * height * base * \sin (hypotenuseAngle) \\[5ex] Area = \dfrac{1}{2} * height * hypotenuse * \sin (baseAngle) \\[5ex] Area = \dfrac{1}{2} * base * hypotenuse * \sin (heightAngle) \\[5ex] Semiperimeter = \dfrac{height + base + hypotenuse}{2} \\[5ex] Semiperimeter - height = firstdifference \\[3ex] Semiperimeter - base = seconddifference \\[3ex] Semiperimeter - hypotenuse = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] hypotenuse = {Perimeter^2 - 4 * Area}{2 * Perimeter} \\[5ex] base = \dfrac{(Perimeter - hypotenuse) \pm Math.sqrt((hypotenuse - Perimeter)^2 - 8 * Area)}{2} \\[5ex] height = \dfrac{2 * Area}{base} $


Triangle

$ Perimeter = firstside + secondside + thirdside \\[5ex] Area = \dfrac{1}{2} * firstside * secondside * \sin (thirdAngle) \\[5ex] Area = \dfrac{1}{2} * firstside * thirdside * \sin (secondAngle) \\[5ex] Area = \dfrac{1}{2} * secondside * thirdside * \sin (firstAngle) \\[5ex] Semiperimeter = \dfrac{firstside + secondside + thirdside}{2} \\[5ex] Semiperimeter - firstside = firstdifference \\[3ex] Semiperimeter - secondside = seconddifference \\[3ex] Semiperimeter - thirdside = thirddifference \\[3ex] Area = \sqrt{Semiperimeter * firstdifference * seconddifference * thirddifference}...Hero's\:\:Formula\:\:or\:\:Heron's\:\:Formula \\[5ex] \underline{Cosine\:\:Law} \\[3ex] firstside^2 = secondside^2 + thirdside^2 - 2 * secondside * thirdside * \cos (firstAngle) \\[3ex] secondside^2 = firstside^2 + thirdside^2 - 2 * firstside * thirdside * \cos (secondAngle) \\[3ex] thirdside^2 = firstside^2 + secondside^2 - 2 * firstside * secondside * \cos (thirdAngle) \\[5ex] firstAngle = \cos^{-1} \left(\dfrac{secondside^2 + thirdside^2 - firstside^2}{2 * secondside * thirdside}\right) \\[5ex] secondAngle = \cos^{-1} \left(\dfrac{firstside^2 + thirdside^2 - secondside^2}{2 * firstside * thirdside}\right) \\[5ex] thirdAngle = \cos^{-1} \left(\dfrac{firstside^2 + secondside^2 - thirdside^2}{2 * firstside * secondside}\right) \\[7ex] \underline{\text{Area of a Triangle given the vertices}} \\[3ex] \text{Let the vertices be:} \\[3ex] Vertex\;1:\;\;(x_1, y_1) \\[4ex] Vertex\;2:\;\;(x_2, y_2) \\[4ex] Vertex\;3:\;\;(x_3, y_3) \\[4ex] Area = \dfrac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| $


Insribed Triangle (Circumscribed Circle)

$ Circumradius = \dfrac{firstside \cdot secondside \cdot thirdside}{4 \cdot Area} $


Square

$ side = length = width = height \\[3ex] Area = side^2 \\[3ex] side = \sqrt{Area} \\[3ex] Perimeter = 4 * side \\[3ex] side = \dfrac{Perimeter}{4} \\[5ex] diagonal = side * \sqrt{2} \\[3ex] side = \dfrac{diagonal * \sqrt{2}}{2} \\[5ex] Area = \dfrac{Perimeter^2}{16} \\[5ex] Perimeter = 4 * \sqrt{Area} \\[3ex] Area = \dfrac{diagonal^2}{2} \\[5ex] diagonal = \sqrt{2 * Area} \\[3ex] Perimeter = 2 * diagonal * \sqrt{2} \\[3ex] diagonal = \dfrac{Perimeter * \sqrt{2}}{4} $


Rectangle

$ Area = length * width \\[3ex] length = \dfrac{Area}{width} \\[5ex] width = \dfrac{Area}{length} \\[5ex] Area = \dfrac{(length * Perimeter) - (2 * length^2)}{2} \\[5ex] Area = \dfrac{(width * Perimeter) - (2 * width^2)}{2} \\[5ex] Perimeter = 2(length + width) \\[3ex] length = \dfrac{Perimeter - 2 * width}{2} \\[5ex] width = \dfrac{Perimeter - 2 * length}{2} \\[5ex] Perimeter = \dfrac{2(length^2 + Area)}{length} \\[5ex] Perimeter = \dfrac{2(width^2 + Area)}{width} \\[5ex] diagonal = \sqrt{length^2 + width^2} \\[4ex] length = \sqrt{diagonal^2 - width^2} \\[4ex] width = \sqrt{diagonal^2 - length^2} \\[4ex] diagonal = \dfrac{\sqrt{length^4 + Area^2}}{length} \\[5ex] diagonal = \dfrac{\sqrt{width^4 + Area^2}}{width} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * length^2) - (4 * Perimeter * length)}}{2} \\[5ex] diagonal = \dfrac{\sqrt{(Perimeter^2) + (5 * width^2) - (4 * Perimeter * width)}}{2} $


Circle

$ Area = A \\[3ex] Circumference = C \\[3ex] Radius = r \\[3ex] Diameter = d \\[3ex] d = 2r \\[3ex] r = \dfrac{d}{2} \\[5ex] A = \pi r^2 \\[3ex] A = \dfrac{\pi d^2}{4} \\[5ex] C = 2\pi r \\[3ex] C = \pi d \\[3ex] r = \dfrac{\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{2\pi} \\[5ex] d = \dfrac{2\sqrt{A\pi}}{\pi} \\[5ex] r = \dfrac{C}{\pi} \\[5ex] A = \dfrac{C^2}{4\pi} \\[5ex] C = 2\sqrt{A\pi} $


Cube

6 square faces
12 edges

$ edge = side = length = width = height \\[3ex] Surface\:\:Area = 6 * edge^2 \\[3ex] edge = \sqrt{\dfrac{Surface\:\:Area}{6}} \\[5ex] Volume = edge^3 \\[3ex] edge = \sqrt[3]{Volume} \\[3ex] Volume = \dfrac{edge * Surface\:\: Area}{6} \\[5ex] edge = \dfrac{6 * Volume}{Surface\:\:Area} \\[5ex] Surface\:\:Area = \dfrac{6 * Volume}{edge} \\[5ex] Volume = \dfrac{Surface\:\:Area * \sqrt{6 * Surface\:\:Area}}{36} \\[5ex] edge = \dfrac{diagonal * \sqrt{3}}{3} \\[5ex] diagonal = \sqrt{3} * edge \\[3ex] Surface\:\:Area = 2 * diagonal^2 \\[3ex] diagonal = \dfrac{\sqrt{2 * Surface\:\:Area}}{2} \\[5ex] Volume = \dfrac{diagonal^3 * \sqrt{3}}{9} \\[5ex] diagonal = \sqrt{3} * \sqrt[3]{Volume} $


Cuboid (Right Rectangular Prism)

$ Volume = Length \cdot Width \cdot Height \\[3ex] $


Right Cone

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cone = \dfrac{1}{3} * Volume\:\:of\:\:Cylinder \\[5ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] Slant Height = l \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] l = \sqrt{h^2 + r^2} \\[3ex] l = \dfrac{\sqrt{4h^2 + d^2}}{2} \\[5ex] h = \sqrt{l^2 - r^2} \\[3ex] h = \dfrac{\sqrt{4l^2 - d^2}}{2} \\[5ex] r = \sqrt{l^2 - h^2} \\[3ex] d = 2 * \sqrt{l^2 - h^2} \\[3ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{BA * \pi}}{\pi} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{BA * \pi}}{\pi} \\[5ex] LSA = \pi rl \\[3ex] LSA = \dfrac{\pi dl}{2} \\[5ex] l = \dfrac{LSA}{\pi r} \\[5ex] LSA = \pi r\sqrt{h^2 + r^2} \\[3ex] h = \dfrac{\sqrt{LSA^2 - \pi^2 r^4}}{\pi r} \\[5ex] TSA = BA + LSA \\[3ex] TSA = \pi r(r + l) \\[3ex] l = \dfrac{TSA - \pi r^2}{\pi r} \\[5ex] TSA = \dfrac{\pi d(d + 2l)}{4} \\[5ex] l = \dfrac{4 * TSA - \pi d^2}{2\pi d} \\[5ex] r = \dfrac{-\pi l \pm \sqrt{\pi^2 l^2 + 4\pi * TSA}}{2\pi} \\[5ex] TSA = \pi r(r + \sqrt{h^2 + r^2}) \\[3ex] h = \dfrac{\sqrt{TSA(TSA - 2\pi r^2)}}{\pi r} \\[5ex] V = \dfrac{BA * h}{3} \\[5ex] V = \dfrac{\pi r^2h}{3} \\[5ex] V = \dfrac{\pi hd^2}{12} \\[5ex] V = \dfrac{\pi h(l^2 - h^2)}{3} \\[5ex] h = \dfrac{3V}{\pi r^2} \\[5ex] r = \dfrac{\sqrt{3V\pi h}}{\pi h} $


Right Cylinder

Curved Surface Area = Lateral Surface Area
Height = Perpendicular Height

$ Volume\:\:of\:\:Cylinder = 3 * Volume\:\:of\:\:Cone \\[3ex] Lateral\:\:Surface\:\:Area = LSA \\[3ex] Base\:\:Area = BA \\[3ex] Total\:\:Surface\:\:Area = TSA \\[3ex] Volume = V \\[3ex] Diameter = d \\[3ex] Radius = r \\[3ex] Height = h \\[3ex] r = \dfrac{d}{2} \\[5ex] d = 2r \\[3ex] LSA = 2\pi rh \\[3ex] r = \dfrac{LSA}{2\pi h} \\[5ex] h = \dfrac{LSA}{2\pi r} \\[5ex] LSA = \pi dh \\[3ex] h = \dfrac{LSA}{\pi d} \\[5ex] d = \dfrac{LSA}{\pi h} \\[5ex] BA = \pi r^2 \\[3ex] r = \dfrac{\sqrt{\pi BA}}{\pi} \\[5ex] r = \dfrac{1}{\pi} * \sqrt{\dfrac{\pi(TSA - 2 * LSA)}{2}} \\[5ex] BA = \dfrac{\pi d^2}{4} \\[5ex] d = \dfrac{2\sqrt{\pi BA}}{\pi} \\[5ex] d = \dfrac{\sqrt{2\pi (TSA - LSA)}}{\pi} \\[5ex] TSA = 2\pi r(r + h) \\[3ex] h = \dfrac{TSA - 2\pi r^2}{2\pi r} \\[5ex] r = \dfrac{-\pi h \pm \sqrt{\pi(\pi h^2 + 2 * TSA)}}{2\pi} \\[5ex] TSA = 2BA + LSA \\[3ex] BA = \dfrac{TSA - LSA}{2} \\[5ex] LSA = TSA - 2BA \\[3ex] TSA = \pi d\left(\dfrac{d + 2h}{2}\right) \\[5ex] h = \dfrac{2 * TSA - \pi d^2}{2\pi d} \\[5ex] d = \dfrac{-\pi h \pm \sqrt{\pi(h^2 + 2 * TSA)}}{\pi} \\[5ex] h = \dfrac{LSA * \sqrt{\pi * BA}}{\pi * BA} \\[5ex] h = \dfrac{LSA}{\sqrt{2\pi(TSA - LSA)}} \\[5ex] BA = \dfrac{LSA^2}{\pi h^2} \\[5ex] BA = \dfrac{(4 * TSA + \pi h^2) \pm h\sqrt{\pi(\pi h^2 - 8 * TSA)}}{8} \\[5ex] LSA = h\sqrt{BA * \pi} \\[3ex] LSA = \dfrac{-\pi h^2 \pm h\sqrt{\pi(\pi h^2 + 8 * TSA)}}{4} \\[5ex] TSA = 2 * BA \pm h\sqrt{\pi * BA} \\[3ex] TSA = \dfrac{LSA(2 * LSA + \pi h^2)}{\pi h^2} \\[5ex] V = \pi r^2h \\[3ex] r = \dfrac{2V}{LSA} \\[5ex] d = \dfrac{4V}{LSA} \\[5ex] r = \dfrac{\sqrt{Vh\pi}}{h\pi} \\[5ex] V = BA * h \\[3ex] BA = \dfrac{V}{h} \\[5ex] h = \dfrac{V}{BA} \\[5ex] h = \dfrac{V}{\pi r^2} \\[5ex] h = \dfrac{4V}{\pi d^2} \\[5ex] V = \dfrac{\pi d^2h}{4} \\[5ex] d = \dfrac{\sqrt{Vh\pi}}2{h\pi} \\[5ex] V = \dfrac{LSA^2}{h\pi} \\[5ex] LSA = \sqrt{Vh\pi} \\[3ex] h = \dfrac{LSA^2}{4V\pi} \\[5ex] V = \dfrac{(h^3\pi + 4 * TSA * h) \pm h^2\sqrt{\pi(h^2\pi + 8 * TSA)}}{8} \\[5ex] TSA = \dfrac{2V + h\sqrt{Vh\pi}}{h} \\[5ex] TSA = \dfrac{2V + 2\pi rh^2}{h} \\[5ex] r = \dfrac{TSA * h - 2V}{2\pi h^2} \\[5ex] d = \dfrac{TSA * h - 2V}{\pi h^2} \\[5ex] h = \dfrac{TSA \pm \sqrt{TSA^2 - 16\pi rV}}{4\pi r} $


Trapezoid

Trapezoid's Midpoint Segment Theorem states that the line segment connecting the nonparallel sides of a trapezoid is parallel to the bases, and it's length is the average of the lengths of the bases.

$ Midline = \dfrac{short\;\;base + long\;base}{2} $

(1.) The sides of a rectangle are $(x + 3)$ cm and $(x - 2)$ cm.
If the area of the rectangle is 36 cm², find its:
(a.) dimensions
(b.) perimeter


$ (a.) \\[3ex] \underline{\text{Rectangle}} \\[3ex] Area = Length * Width \\[3ex] Length = x + 3 \\[3ex] Width = x - 2 \\[3ex] 36 = (x + 3)(x - 2) \\[3ex] 36 = x^2 - 2x + 3x - 6 \\[3ex] 36 = x^2 + x - 6 \\[3ex] x^2 + x - 6 - 36 = 0 \\[3ex] x^2 + x - 42 = 0 \\[3ex] (x + 7)(x - 6) = 0 \\[3ex] x + 7 = 0 \hspace{2em}OR\hspace{2em} x - 6 = 0 \\[3ex] x = -7 \hspace{2em}OR\hspace{2em} x = 6 \\[3ex] x = -7...\text{discard because any of the sides cannot be negative:} \\[3ex] x = 6 ...\text{keep} \\[3ex] Length = 6 + 3 = 9\;cm \\[3ex] Width = 6 - 2 = 4\;cm \\[3ex] \text{Dimensions = Length × Width} \\[3ex] = 9\;cm \times 4\;cm \\[5ex] (b.) \\[3ex] Perimeter = 2(Length + Width) \\[3ex] Perimeter = 2(9 + 4) \\[3ex] Perimeter = 26\;cm $
(2.)


(3.)


(4.)

(5.)

(6.)

(7.)


(8.)


(9.)


(10.) Number 10

The diagram shows the net of a rectangular pyramid.
Calculate, correct to two decimal places, the:
(a.) slant height;
(b.) perpendicular height;
(c.) total surface area of the pyramid.


The net of the rectangular-based pyramid has 4 triangular faces (2 triangles of base 4 cm and 2 triangles of base 10 cm) and a rectangle.
When folded into the pyramid, the perpendicular height of the triangle is the slant height of the pyramid.
This implies that there are two slant heights of the pyramid:
the slant height as a result of the perpendicular heights of 2 triangles of base 4 cm
and
the slant height as a result of the perpendicular heights of 3 triangles of base 10 cm

Let us indicate points on the diagram to help us analyze it.

Number 10

$ \underline{\triangle EJD} \\[3ex] \perp height = |JD| = 6\;cm ...\text{1st value: Given} \\[3ex] base = |EJ| = \dfrac{4}{2} = 2\;cm \\[5ex] hypotenuse = |ED| = ? \\[3ex] |ED|^2 = |EJ|^2 + |JD|^2 ...\text{Pythagorean Theorem} \\[3ex] |ED|^2 = 2^2 + 6^2 \\[3ex] |ED| = \sqrt{4 + 36} \\[3ex] = \sqrt{40} \\[3ex] = 6.32455532\;cm \\[3ex] \approx 6.32\;cm ...\text{to two decimal places} \\[3ex] $ The slant edges (the hypotenuse of the right triangles) are the same length because, in a right rectangular pyramid, the apex is positioned symmetrically above the center of the rectangular base, hence the distance from the apex of the pyramid to each vertex of the rectangular base is the same.

$ \underline{\text{Slant Edge}} \\[3ex] |ED| = |DF| = |GE| = |GB| = |BA| = |AC| = |CH| = |HF| = \sqrt{40} = 6.32455532\;cm \\[5ex] \underline{\triangle GKE} \\[3ex] \perp height = |GK| = ? \\[3ex] base = |KE| = \dfrac{10}{2} = 5\;cm \\[5ex] hypotenuse = |GE| = \sqrt{40}\;cm \\[3ex] |GE|^2 = |GK|^2 + |KE|^2 ...\text{Pythagorean Theorem} \\[3ex] |GK|^2 = |GE|^2 - |KE|^2 \\[3ex] |GK|^2 = (\sqrt{40})^2 - 5^2 \\[3ex] |GK|^2 = 40 - 25 \\[3ex] |GK| = \sqrt{15} \\[3ex] |GK| = 3.872983346\;cm ...\text{2nd value: Calculated} \\[3ex] $ For the 6cm:
The base of the right triangle formed inside the pyramid will be half the length of the other base dimension (10 cm)

For the \sqrt{15}\;cm:
The base of the right triangle formed inside the pyramid will be half the length of the other base dimension (4 cm)

$ (b.) \\[3ex] \text{Perpendicular Height, H} \\[3ex] \text{1st Approach}: \\[3ex] hyp = 6\;cm...\text{1st value: Given} \\[3ex] leg = base = \dfrac{10}{2} = 5\;cm \\[5ex] leg = \perp height = H \\[3ex] hyp^2 = leg^2 + leg^2 ...\text{Pythagorean Theorem} \\[3ex] 6^2 = H^2 + 5^2 \\[3ex] H^2 = 6^2 - 5^2 \\[3ex] H = \sqrt{36 - 25} \\[3ex] H = \sqrt{11} \\[3ex] H = 3.31662479 \\[3ex] H \approx 3.32\;cm ...\text{to two decimal places} \\[3ex] \text{2nd Approach}: \\[3ex] hyp = \sqrt{15}\;cm...\text{1st value: Given} \\[3ex] leg = base = \dfrac{4}{2} = 2\;cm \\[5ex] leg = \perp height = H \\[3ex] hyp^2 = leg^2 + leg^2 ...\text{Pythagorean Theorem} \\[3ex] (\sqrt{15})^2 = H^2 + 2^2 \\[3ex] H^2 = (\sqrt{15})^2 - 2^2 \\[3ex] H = \sqrt{15 - 4} \\[3ex] H = \sqrt{11} \\[3ex] H = 3.31662479 \\[3ex] H \approx 3.32\;cm ...\text{to two decimal places} \\[5ex] (c.) \\[3ex] \text{Area of a Triangle} = \dfrac{1}{2} * base * height \\[5ex] \text{Area of 2 triangles of base, 4cm and } \perp \text{height, 6cm} \\[3ex] = 2 * \dfrac{1}{2} * 4 * 6 \\[5ex] = 24\;cm^2 \\[5ex] \text{Area of 2 triangles of base, 10cm and } \perp \text{height, 3.872983346cm} \\[3ex] = 2 * \dfrac{1}{2} * 10 * 3.872983346 \\[5ex] = 38.72983346\;cm^2 \\[5ex] \text{Area of a Rectangle} = Length * Width \\[3ex] \text{Area of a Rectangle of Length, 10cm and Width, 4cm} \\[3ex] = 10 * 4 \\[3ex] = 40\;cm^2 \\[5ex] \text{Total Surface Area of the Pyramid} \\[3ex] = \text{Area of 2 triangles of base 4cm} + \text{Area of 2 triangles of base 10cm} + \text{Area of the rectangle} \\[3ex] = 24 + 38.72983346 + 40 \\[3ex] = 102.7298335 \\[3ex] \approx 102.73\;cm^2 $
(11.)


(12.)


(13.) An isosceles triangle PQR has its vertices on the circumference of a circle.
If $|\overline{PQ}| = |\overline{QR}| = 17\;cm \;\;|\overline{PR}| = 16\;cm$ and M is the midpoint of $|\overline{PR}|$, calculate:
(a.) $|\overline{QM}|$
(b.) correct to the nearest whole number, the radius of the circle.


Let us represent the information on a diagram
Please note the colors

Number 13-1st

$ (a.) \\[3ex] Let\;\;|\overline{QM}| = h \\[3ex] \underline{\triangle QMR} \\[3ex] h^2 + 8^2 = 17^2 ...\text{Pythagorean Theorem} \\[3ex] h^2 = 17^2 - 8^2 \\[3ex] h^2 = 289 - 64 \\[3ex] h^2 = 225 \\[3ex] h = \sqrt{225} \\[3ex] h = 15\;cm \\[5ex] $ We can solve (b.) using at least two approaches.
Use any approach you prefer.
Let us update our diagram
Let O be the centre of the circle
Let r be the radius of the circle
Please note the colors

Number 13-2nd

$ (b.) \\[3ex] \underline{\text{1st Approach: Pythagorean Theorem}} \\[3ex] \underline{\triangle OMR} \\[3ex] r^2 = (15 - r)^2 + 8^2 ...\text{Pythagorean Theorem} \\[3ex] r^2 = (15 - r)(15 - r) + 64 \\[3ex] r^2 = 225 - 15r - 15r + r^2 + 64 \\[3ex] r^2 = 225 - 30r + r^2 + 64 \\[3ex] r^2 - r^2 + 30r = 225 + 64 \\[3ex] 30r = 289 \\[3ex] r = \dfrac{289}{30} \\[5ex] r = 9.633333333 \\[3ex] r \approx 10\;cm ...\text{to the nearest whole number} \\[3ex] $ Let:
a, b, c be the sides of the triangle
s be the perimeter A be the area of the triangle

$ \underline{\text{2nd Approach: Heron's Formula and Circumradius Formula}} \\[3ex] a = 16\;cm \\[3ex] b = 17\;cm \\[3ex] c = 17\;cm \\[3ex] s = \dfrac{a + b + c}{3} = \dfrac{16 + 17 + 17}{2} = 25 \\[5ex] s - a = 25 - 16 = 9 \\[3ex] s - b = 25 - 17 = 8 \\[3ex] s - c = 25 - 17 = 8 \\[3ex] s(s - a)(s - b)(s - c) = 25(9)(8)(8) = 14400 \\[3ex] A = \sqrt{s(s - a)(s - b)(s - c)}...\text{Heron's Formula} \\[3ex] A = \sqrt{14400} \\[3ex] A = 120\;cm^2 \\[5ex] r = \dfrac{abc}{4A} \\[5ex] r = \dfrac{16 \cdot 17 \cdot 17}{4 \cdot 120} \\[5ex] r = 9.633333333 \\[3ex] r \approx 10\;cm ...\text{to the nearest whole number} $
(14.)


(15.)

(16.)


(17.)

(18.)


(19.)

(20.)






Top




(21.)


(22.)


(23.)

(24.)


(25.)

(26.)


(27.)

(28.)


(29.)

(30.)


(31.)

(32.)


(33.)

(34.)


(35.)

(36.)


(37.)

(38.)


(39.)

(40.)


Cash App: Your donation is appreciated. PayPal: Your donation is appreciated. YouTube: Please Subscribe, Share, and Like my Channel
© 2025 Exams Success Group: Your Success in Exams is Our Priority
The Joy of a Teacher is the Success of his Students.